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Abstract

In this paper the dynamic stability of non-gyroscopic viscoelastic systems under multiple parametric excitations is

investigated. The largest Lyapunov exponent as an indicator of the almost-sure asymptotic stability of the system is

obtained by applying the stochastic averaging method together with Khasminskii�s technique. The integral term arising

from the viscoelastic effect is averaged by making use of Larianov�s method. As an application, the flexural–torsional

instability of a deep rectangular viscoelastic beam under stochastically fluctuating central load and end moments ap-

plied simultaneously is investigated. Both cases of follower and non-follower central fluctuating load are included in this

analysis.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic stability of non-gyroscopic conservative elastic systems such as beams and columns under

non-follower force, and of non-gyroscopic, non-conservative systems such as plates in supersonic flow

under deterministic axial thrust have been treated in detail by Bolotin (1963, 1964). Applications to the

dynamic stability of structures under periodic forces may also be found in the articles by Mettler (1966,

1968). The dynamic stability problem of elastic beams under deterministic parametric and external loads
associated with different end conditions has been investigated by many researchers, such as Saito and

Koizumi (1982), Huang and Hung (1984).

In some engineering applications, there exist situations in which the exciting forces cannot be described

adequately in the form of deterministic functions alone and a modelling based on probabilistic terms is

needed. Some examples of such stochastic excitation are forces generated by jet and rocket engines in

modern high powered aircraft and missile structures, excitation due to earthquakes, ocean waves, and wind

gusts. Furthermore, even when the excitation can be described to be principally deterministic, it may be

more realistic to investigate the stability of the system by subjecting it to an additional random pertur-
bation. To investigate the stability of linear stochastic systems, Khasminskii (1967) developed a technique,
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based on the concept of Lyapunov exponent as an almost-sure stability indicator, by studying the

dynamical stability of linear systems described by Itô stochastic differential equations whose solutions are

Markov processes.

The stochastic stability of certain two-dimensional systems using Khasminskii�s technique (1967), has
been investigated by Mitchell and Kozin (1974). By using the method of stochastic averaging developed by

Stratonovich (1963) and Khasminskii (1966), the moment stability of non-gyroscopic elastic systems under

random loading was examined by Ariaratnam and Srikantaiah (1978). The sample stability of the same

class of problems under white noise excitation was also studied by Ariaratnam et al. (1990) and under real

noise excitation by Ariaratnam et al. (1992) by using a combination of the stochastic averaging method and

Khasminskii�s technique.
A two-dimensional viscoelastic system under a phase modulated bounded noise process was studied by

Ariaratnam (1995). Potapov and Bonder (1996) investigated the vibrations of elastic and viscoelastic plates
under random loading and obtained stability conditions in the mean and mean square sense. Ariaratnam

and Abdelrahman (2001) studied the stability of viscoelastic plates in supersonic gas flow and under sto-

chastic axial thrust and obtained explicit expressions for the largest Lyapunov exponent.

In the present paper, the stability of non-gyroscopic viscoelastic systems subjected to multiple parametric

random excitations described by a linear combination of ergodic stochastic processes of small intensity and

short correlation time is investigated. The motivation for the study of this class of problems stems from the

investigation of flexural–torsional instability of a deep rectangular viscoelastic beam subjected to sto-

chastically fluctuating central transverse load and end moments applied simultaneously. The almost-sure
stability conditions are obtained by using a combination of the method of stochastic averaging and

Khasminskii�s technique together with Larianov�s method (1969) for averaging the viscoelastic terms. In

analogy with the deterministic results obtained by Mettler (1968), it is found in this analysis that only those

values of the excitation spectrum near twice the system natural frequencies and the sum and difference of

the natural frequencies influence the stability in the first approximation. As an application, the flexural–

torsional instability of a deep rectangular viscoelastic beam under follower or non-follower central

transverse loads and end moments is investigated in the present analysis.
2. Formulation

Consider a dynamical system described by the following non-dimensional linear stochastic differential

equations:
€qi þ x2
i qi � x2

i

Xn
j¼1

eijR½qj� þ 2
Xn
j¼1

bij _qj þ xi

Xn
j¼1

kijgijðtÞqj ¼ 0; i ¼ 1; 2; . . . ; n ð1Þ
where qi are the non-dimensional generalized coordinates, xi are the non-dimensional natural frequencies,

eij are non-dimensional constant coefficients and R is a viscoelastic relaxation operator given by
R½wðtÞ� ¼
Z t

0

Rðt � sÞwðsÞds ð2Þ
The non-dimensional coefficients terms bij and kij are the small viscous damping and stiffness coefficients,

respectively. The non-dimensional processes gijðtÞ, i; j ¼ 1; 2; . . . ; n, denote the multiple parametric exci-

tations and are described as a linear combination of the non-dimensional ergodic stochastic processes nmðtÞ,
where m ¼ 1; 2; . . . ;N . The processes nmðtÞ are considered to have zero mean and a sufficiently small cor-
relation time:
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gijðtÞ ¼
XN
m¼1

cijmnmðtÞ i; j ¼ 1; 2; . . . ; n ð3Þ
where cijm are non-dimensional constant coefficients giving the contribution of the ergodic stochastic

processes nmðtÞ, m ¼ 1; 2; . . . ;N , to the multiplicative processes gijðtÞ, i; j ¼ 1; 2; . . . ; n. The system of

equations (1) describes exactly the parametrically excited motion of non-gyroscopic, discrete, linear

mechanical systems with n-degrees of freedom about the equilibrium configuration qi ¼ 0. They may also

describe approximately the motion of certain continuous linear systems whose governing partial differential

equations may be reduced to a finite number of ordinary differential equations by some appropriate dis-
cretization technique such as the Rayleigh-Ritz, Galerkin, finite difference, or finite element procedures.

The stability of the equilibrium state q ¼ _q ¼ 0 for elastic systems, when the parametric excitation is a

deterministic harmonic function of time, i.e gij ¼ e cosxt, was investigated by Mettler (1968), and it is well

known that instabilities occur when the excitation frequency x is in the neighborhood of the values x0=p,
where p is a positive integer and x0 depends on the form of the coupling coefficients kij. Instabilities of the
first kind arise for x0 ¼ 2xi and correspond to parametric resonance of the subharmonic type in which only

the particular mode qi is excited into motion. Regions of instabilities of the second kind are found for
x0 ¼
xi þ xj ði 6¼ jÞ if kijkji > 0

jxi � xjj ði 6¼ jÞ if kijkji < 0

�
ð4Þ
In the present analysis, the damping terms bij, the cosine and sine spectral densities of the multiplicative

processes gijðtÞ, grsðtÞ, respectively, SgijgrsðxÞ and WgijgrsðxÞ, i; j; r; s ¼ 1; 2 . . . ; n, are considered to be of the
order of some small quantity e, 0 < e � 1. The relaxation kernel RðtÞ is assumed to be integrable such thatR1
0

RðtÞdt < 1,
R1
0

tRðtÞdt < 1, and the terms
R1
0

eiiRðtÞ sinxisds, i ¼ 1; 2; . . . ; n are considered to be of

order e. The terms
R1
0

RðtÞ sinxisds, i ¼ 1; 2; . . . ; n, are the sine transform functions of the relaxation

kernel. Therefore, the stochastic averaging method may be used to replace the system of equations (1) by

approximate Itô equations. The non-dimensional cosine and sine cross-spectral densities, SgijgrsðxÞ and

WgijgrsðxÞ, respectively, are given by
SgijgrsðxÞ ¼
XN
‘;m¼1

cij‘crsmSn‘nmðxÞ

WgijgrsðxÞ ¼
XN
‘;m¼1

cij‘crsmWn‘nmðxÞ
ð5Þ
The non-dimensional functions Sn‘nmðxÞ and Wn‘nmðxÞ are the cosine and sine cross-spectral densities of the

ergodic stochastic processes nmðtÞ and n‘ðtÞ, ‘;m ¼ 1; 2; . . . ;N , and are defined as
Sn‘nmðxÞ ¼ 2

Z 1

0

E½n‘ðtÞnmðt þ sÞ� cosxsds

Wn‘nmðxÞ ¼ 2

Z 1

0

E½n‘ðtÞnmðt þ sÞ� sinxsds
ð6Þ
where E½:� denotes the expectation operator, x, and s represent the non-dimensional frequency and sepa-

ration time, respectively. Using the transformation
qi ¼ ai cosHi; _qi ¼ �aixi sinHi; Hi ¼ xit þ hi; i ¼ 1; 2; . . . ; n ð7Þ
and applying the method of variation of parameters, equations of motion in terms of the amplitudes aiðtÞ
and the phases hiðtÞ of the response processes can be obtained as follows:
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_aiðtÞ ¼ � 2 sinHiðtÞ
xi

Xn
j¼1

bijajxj sinHjðtÞ þ sinHiðtÞ
Xn
j¼1

kijajgijðtÞ cosHjðtÞ

� xiai sinHiðtÞ
Xn
j¼1

Z t

0

eijRðt � sÞ cosHjðsÞds

_hiðtÞ ¼ � 2 cosHiðtÞ
aixi

Xn
j¼1

bijajxj sinHjðtÞ þ cosHiðtÞ
Xn
j¼1

kij
aj
ai
gijðtÞ cosHjðtÞ

� xi cosHiðtÞ
Xn
j¼1

Z t

0

eijRðt � sÞ cosHjðsÞds

ð8Þ
As e decreases to zero, the solution of the system of equations (8) converges in the weak sense and up to first

order in e to a diffusive Markov process whose governing Itô equations are of the form
dai ¼ maidt þ
Xn
j¼1

rijdWaj

dhi ¼ mhidt þ
Xn
j¼1

lijdWhj

ð9Þ
where Waj and Whj are mutually independent unit Wiener processes. The drift coefficients mai and mhi and the
diffusion coefficients rij, lij are obtained by using the averaging procedure of Stratonovich (1963) for the

non-viscoelastic terms and of Larianov (1969) for the viscoelastic terms and are given by
mai ¼ �bii �
1

2
xieiiRsðxiÞ þ

3

16
k2iiSgiigiið2xiÞ þ

1

8

Xn
j¼1
j 6¼i

kijkjiS�
gijgji

2
664

3
775ai þ 1

16

Xn
j¼1
j 6¼i

k2ijS
þ
gijgij

a2j
ai

mhi ¼ � 1

8

Xn
j¼1
j 6¼i

kijkjiW
�
gijgji

� 1

8
k2iiWgiigiið2xiÞ �

1

2
xieiiRcðxiÞ

½rrT �ii ¼
1

8
k2iiSgiigiið2xiÞa2i þ

1

8

Xn
j¼1

j 6¼i

k2ijS
þ
gijgij

a2j

½rrT �ij ¼
1

8
kijkjiS�

gijgji
aiaj i 6¼ j

½llT �ii ¼
1

8
k2ii½2Sgiigiið0Þ þ Sgiigiið2xiÞ� þ

1

8

Xn
j¼1

j 6¼i

k2ijS
þ
gijgij

a2j
a2i

½llT � ¼ 1
kiikjjSg g ð0Þ þ 1

kijkjiSþ i 6¼ j

ð10Þ
ij 4 ii jj 8 gijgji
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The non-dimensional functions S�
gijgji

, S�
gijgij

, W�gijgji i 6¼ j are defined as
S�
gijgji

¼
XN
‘;m¼1

cij‘cjim½Sn‘nmðxi þ xjÞ � Sn‘nmðxi � xjÞ�

S�
gijgij

¼
XN
‘;m¼1

cij‘cijm½Sn‘nmðxi þ xjÞ � Sn‘nmðxi � xjÞ�

W�
gijgji

¼
XN
‘;m¼1

cij‘cjim½Wn‘nmðxi þ xjÞ �Wn‘nmðxi � xjÞ�

ð11Þ
The non-dimensional one sided Fourier sine and cosine transforms of the relaxation kernel are given by
RsðxiÞ ¼
Z 1

0

RðsÞ sinxisds

RcðxiÞ ¼
Z 1

0

RðsÞ cosxisds
ð12Þ
Since it is difficult to study the n-degrees of freedom system of Eq. (1) in its general form, the analysis from

now on will be restricted to a two-degrees of freedom system. The results obtained for the two-degrees of

freedom system may be generalized to n-degrees of freedom systems under certain conditions on the

spectral density distribution of the ergodic stochastic processes nmðtÞ. Without loss of generality, it is always

possible to choose a suitable coordinate scaling such that k12 ¼ �k21 ¼ k > 0, and with the product jk12k21j
invariant under the scaling. For the two-degrees of freedom system, the amplitude equations corresponding

to Eq. (9) become
da1 ¼ ma1dt þ r11 dWa1 þ r12 dWa2

da2 ¼ ma2dt þ r21 dWa1 þ r22 dWa2

ð13Þ
The averaged amplitude vector ða1; a2Þ is a two-dimensional diffusion process and it can easily be shown
that the coefficients of the right side of Eq. (13) are homogeneous in a1, a2 of degree one. The procedure of
Khasminskii (1967) can therefore be employed to obtain the largest Lyapunov exponent of the amplitude

process. By using the logarithmic polar transformation
q ¼ logða21 þ a22Þ
1=2

; / ¼ tan�1ða2=a1Þ; / � ð0; p=2Þ ð14Þ

and employing Itô�s differential rule, the following Itô equations for the functions q and / can be obtained

as follows:
dq ¼ Qð/Þdt þ
X2
j¼1

ra1j

oq
oa1

�
þ ra2j

oq
oa2

�
dWjðtÞ

d/ ¼ Uð/Þdt þ
X2
j¼1

ra1j

o/
oa1

�
þ ra2j

o/
oa2

�
dWjðtÞ

ð15Þ
where the drift coefficients Qð/Þ and Uð/Þ in Eq. (15) are given by
Qð/Þ ¼ k1 cos
2 /þ k2 sin

2 /� 1

8
k2S�

g12g21
þ R//ð/Þ

Uð/Þ ¼ � 1

2
ðk1 � k2Þ sin 2/þ 1

2
b sin 4/þ 1

16
k2 Sþ

g12g12
þ Sþ

g21g21

� �
cot 2/

þ f cos 2/ cot 2/

ð16Þ
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while the square of the diffusion coefficient for the /ðtÞ-process is given by
R//ð/Þ ¼ aþ f cos 2/� b cos2 2/ ð17Þ
where the constants ki ¼ �bii � 1
2
xieiiRsðxiÞ þ 1

8
k2iiSgiigiið2xiÞ, and a, b and f are found to be
a ¼ 1

32
½k211Sg11g11ð2x1Þ þ k222Sg22g22ð2x2Þ þ ðSþ

g12g12
þ Sþ

g21g21
� 2S�

g12g21
Þk2�

b ¼ 1

32
½k211Sg11g11ð2x1Þ þ k222Sg22g22ð2x2Þ � ðSþ

g12g12
þ Sþ

g21g21
� 2S�

g12g21
Þk2�

f ¼ 1

16
k2ðSþ

g12g12
� Sþ

g21g21
Þ

ð18Þ
In the expressions for the constants a and b, the upper sign (+) is taken when k12 ¼ k21 ¼ k and the lower

sign(-) is taken when k12 ¼ �k21 ¼ k.
For a non-singular diffusion, i.e. when the diffusion coefficient in the Itô equation of the / process is not

equal to zero, the probability density, lð/Þ, of the invariant measure of the /-process is governed by the

following Fokker–Planck equation:
d

d/
1

2

d

d/
½R//ð/Þlð/Þ�

�
� Uð/Þlð/Þ

�
¼ 0 ð19Þ
By solving Eq. (19), one obtains
lð/Þ ¼ C
R//ð/ÞUð/Þ �

G0

R//ð/ÞUð/Þ

Z
Uð/Þd/ ð20Þ
where C and G0 are the constants of integration and Uð/Þ is given by
Uð/Þ ¼ exp

�
� 2

Z
Uð/Þ
R//ð/Þ

d/

�
ð21Þ
Upon substituting for Uð/Þ and R//ð/Þ from Eqs. (16) and (17), the following expression for Uð/Þ can be

obtained
Uð/Þ ¼ 1

sin 2/
exp

Z ðk1 � k2Þ sin 2/d/
aþ f cos 2/� b cos2 2/

� �
ð22Þ
The objective of the present study is to investigate the stochastic stability of a non-gyroscopic viscoelastic

system. One of the most important parameters in studying stochastic stability of dynamic systems is the

largest Lyapunov exponent, which characterizes the rate of exponential growth of the system response with

the passage of time. If the maximum exponent is positive, the system is unstable with probability one and if

it is negative, the system is stable with probability one. The vanishing of the expression for the top

Lyapunov exponent yields the almost-sure stability boundaries in the system parameter space.
3. Calculation of Lyapunov exponent

Case 1: g11ðtÞ 6¼ g12ðtÞ 6¼ g21ðtÞ 6¼ g22ðtÞ. The integral in Eq. (22) depends on the value of D ¼ �4b=a�
ðf =aÞ2. If there is no accumulation of probability mass at the boundaries, the /-process is ergodic
throughout the interval 0 < / < p=2, and the probability density, lð/Þ, of the invariant measure can be

obtained as:
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For D < 0,
lð/Þ ¼ C sin 2/
R//ð/Þ

exp
k2 � k1
a
ffiffiffiffiffiffiffi
�D

p tanh�1 f � 2b cos 2/

a
ffiffiffiffiffiffiffi
�D

p
� �
For D > 0,
lð/Þ ¼ C sin 2/
R//ð/Þ

exp

�
� k2 � k1

a
ffiffiffiffi
D

p tan�1 f � 2b cos 2/

a
ffiffiffiffi
D

p
�

For D ¼ 0,
lð/Þ ¼ C sin 2/
R//ð/Þ

exp
k2 � k1

f � 2b cos 2/

� �
ð23Þ
where the constant C is determined as follows from the normalizing condition:

For D < 0,
C ¼ ðk2 � k1Þ
exp k2�k1

a
ffiffiffiffiffi
�D

p tanh�1 c2
� �

� exp k2�k1
a
ffiffiffiffiffi
�D

p tanh�1 c1
� �h i
For D > 0,
C ¼ ðk2 � k1Þ
exp � k2�k1

a
ffiffiffi
D

p tan�1 c2
� �

� exp � k2�k1
a
ffiffiffi
D

p tan�1 c1
� �h i
For D ¼ 0,
C ¼ ðk2 � k1Þ
exp k2�k1

ðfþ2bÞ

� �
� exp k2�k1

ðf�2bÞ

� �h i ð24Þ
where the constants c1, c2 are defined by
c1 ¼
f � 2b

a
ffiffiffiffiffiffi
jDj

p
c2 ¼

f þ 2b

a
ffiffiffiffiffiffi
jDj

p ð25Þ
Employing Khasminskii�s (1967) technique, the largest Lyapunov exponent is given, with probability one,

by
k ¼ E½Qð/Þ� ¼
Z p=2

0

Qð/Þlð/Þd/ ð26Þ
After performing the indicated integration, the following expressions for the largest Lyapunov exponent

can be obtained:

For D < 0,
k ¼ 1

2
ðk2 � k1Þ

exp k2�k1
a
ffiffiffiffiffi
�D

p tanh�1 c2
� �

þ exp k2�k1
a
ffiffiffiffiffi
�D

p tanh�1 c1
� �h i

exp k2�k1
a
ffiffiffiffiffi
�D

p tanh�1 c2
� �

� exp k2�k1
a
ffiffiffiffiffi
�D

p tanh�1 c1
� �h iþ 1

2
ðk1 þ k2Þ �

1

8
k2S�

g12g21
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For D > 0,
k ¼ 1

2
ðk2 � k1Þ

exp � k2�k1
a
ffiffiffi
D

p tan�1 c2
� �

þ exp � k2�k1
a
ffiffiffi
D

p tan�1 c1
� �h i

exp � k2�k1
a
ffiffiffi
D

p tan�1 c2
� �

� exp � k2�k1
a
ffiffiffi
D

p tan�1 c1
� �h iþ 1

2
ðk1 þ k2Þ �

1

8
k2S�

g12g21
For D ¼ 0,
k ¼ 1

2
ðk2 � k1Þ

exp k2�k1
ðfþ2bÞ

� �
þ exp k2�k1

ðf�2bÞ

� �h i
exp k2�k1

ðfþ2bÞ

� �
� exp k2�k1

ðf�2bÞ

� �h iþ 1

2
ðk1 þ k2Þ �

1

8
k2S�

g12g21
ð27Þ
Case 2: gijðtÞ ¼ gðtÞ, i; j ¼ 1; 2. For this case, the constant f ¼ 0, while the constants a and b are given

in terms of the spectral densities of the ergodic stochastic processes nmðtÞ and n‘ðtÞ as the following:
a ¼ 1

32

XN
‘;m¼1

c11‘c11m½k211Sn‘nmð2x1Þ þ k222Sn‘nmð2x2Þ þ 4k2Sn‘nmðx1 � x2Þ�

b ¼ 1

32

XN
‘;m¼1

c11‘c11m½k211Sn‘nmð2x1Þ þ k222Sn‘nmð2x2Þ � 4k2Sn‘nmðx1 � x2Þ�
ð28Þ
Utilizing the same procedure as for Case (1), the probability density, lð/Þ, of the invariant measure and

the largest Lyapunov exponent k are found to be:

For b > 0,
lð/Þ ¼ C sin 2/
R//ð/Þ

exp
k1 � k2ffiffiffiffiffi

D0

p cosh�1 aþ b cos2 2/
a� b cos2 2/

� �
where the constant D0 ¼ 16ab and the normalization constant C is obtained as:
C ¼ ðk1 � k2Þ

2 sinh k1�k2ffiffiffiffi
D0

p cosh�1 aþb
a�b

� �

k ¼ 1

2
ðk1 � k2Þ coth

k1 � k2ffiffiffiffiffi
D0

p cosh�1 aþ b
a� b

� �
þ 1

2
ðk1 þ k2Þ �

1

8
k2
XN
‘;m¼1

c11‘c11mS�
n‘nm
For b < 0,
lð/Þ ¼ C sin 2/
R//ð/Þ

exp

�
� k1 � k2ffiffiffiffiffiffiffiffiffi

�D0

p cos�1 aþ b cos2 2/
a� b cos2 2/

�

C ¼ ðk1 � k2Þ

2 sinh k1�k2ffiffiffiffiffiffi
�D0

p cos�1 aþb
a�b

� �

k ¼ 1

2
ðk1 � k2Þ coth

k1 � k2ffiffiffiffiffiffiffiffiffi
�D0

p cos�1 aþ b
a� b

� �
þ 1

2
ðk1 þ k2Þ �

1

8
k2
XN
‘;m¼1

c11‘c11mS�
n‘nm
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For b ¼ 0,
lð/Þ ¼ C sin 2/
R//ð/Þ

exp
k1 � k2
2a

cos 2/

� �

C ¼ ðk1 � k2Þ
sinh k1�k2

2a


 �
k ¼ 1

2
ðk1 � k2Þ coth

4ðk1 � k2Þ
k2
PN

‘;m¼1 c11‘c11mS
þ
n‘nm

 !
þ 1

2
ðk1 þ k2Þ

� 1

8
k2
XN
‘;m¼1

c11‘c11mS�
n‘nm

ð29Þ
The expressions of Eq. (29) are in the same form as those obtained earlier by Ariaratnam and Abdelrahman

(2001), but here are obtained as a special case when the multiple random excitation gijðtÞ, i; j ¼ 1; 2, has a
specific form.
4. Singular case

The point / ¼ /0 is considered to be a singular point when the square of the diffusion coefficient R//ð/Þ
of the phase process / vanishes at that point. For the case g11ðtÞ 6¼ g12ðtÞ 6¼ g21ðtÞ 6¼ g22ðtÞ, the point

/ ¼ p=4 is a singular point when the following conditions are satisfied
k11 ¼ k22 ¼ 0; Sn‘nmðx1 � x2Þ ¼ 0; c12‘ ¼ �c21‘; c12m ¼ �c21m ð30Þ
where ‘;m ¼ 1; 2; . . . ;N , the upper sign (+) is taken when k12 ¼ k21 ¼ k, and the lower sign(-) when
k12 ¼ �k21 ¼ k. Under the conditions of Eq. (30), the drift coefficients Qð/Þ, Uð/Þ and the diffusion co-

efficient R//ð/Þ are given by
Qð/Þ ¼ � b11 þ
1

2
x1e11Rsðx1Þ

� �
cos2 /� b22

�
þ 1

2
x2e22Rsðx2Þ

�
sin2 /

þ 1

8
k2
XN
‘;m¼1

c12‘c12mSn‘nmðx1 � x2Þ þ R//ð/Þ

Uð/Þ ¼ 1

4
½2ðb11 � b22Þ þ x1e11Rsðx1Þ � x2e22Rsðx2Þ� sin 2/

þ 1

8
k2
XN
‘;m¼1

c12‘c12mSn‘nmðx1 � x2Þ cot 2/ cos2 2/

R//ð/Þ ¼
1

8
k2
XN
‘;m¼1

c12‘c12mSn‘nmðx1 � x2Þ cos2 2/

ð31Þ
The nature of the singular point / ¼ /0 is determined by the sign of the drift coefficient Uð/Þ at that point
(Mitchell and Kozin, 1974). Applying this criterion to the singular point /0 ¼ p=4, the following three cases
are considered.

(i) If 2b11 þ x1e11Rsðx1Þ > 2b22 þ x2e22Rsðx2Þ, the singular point /0 ¼ p=4 is a right or forward shunt.
This implies that even if an initial point /0 is in the left-half interval ð0; p=4Þ, it will eventually be shunted

across to the right-half interval ðp=4; p=2Þ and remain there forever. The probability density lð/Þ of the
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invariant measure is confined to the right-half of the interval 0 < / < p=2 and is governed by the Fokker–

Planck equation whose solution is now of the form:
lð/Þ ¼
0 0 < / < p=4

C
R//ð/ÞUð/Þ p=4 < / < p=2

�
ð32Þ
where C is the normalizing constant. The largest Lyapunov exponent is obtained as
k ¼ � 1

2
½2b22 þ x2e22Rsðx2Þ� þ

1

8
k2
XN
‘;m¼1

c12‘c12mSn‘nmðx1 � x2Þ ð33Þ
(ii) If 2b11 þ x1e11Rsðx1Þ < 2b22 þ x2e22Rsðx2Þ, the singular point /0 ¼ p=4 is a left or backward shunt.

This implies that even if an initial point /0 is in the right-half interval ðp=4; p=2Þ, it will eventually be

shunted across to the left-half interval ð0; p=4Þ and remain there forever. The probability density lð/Þ of the
invariant measure is concentrated in the left-half of the interval 0 < / < p=2 and is governed by the

Fokker–Planck equation whose solution is now of the form:
lð/Þ ¼
C

R//ð/ÞUð/Þ 0 < / < p=4

0 p=4 < / < p=2

�
ð34Þ
The largest Lyapunov exponent is now given by
k ¼ � 1

2
½2b11 þ x1e11Rsðx1Þ� þ

1

8
k2
XN
‘;m¼1

c12‘c12mSn‘nmðx1 � x2Þ ð35Þ
(iii) If 2b11 þ x1e11Rsðx1Þ ¼ 2b22 þ x2e22Rsðx2Þ, the singular point /0 ¼ p=4 is a trap. This implies that

regardless of where the initial point /0 is situated, it will eventually be attracted to the point /0 ¼ p=4 and

remain there forever. In this case, the probability density, lð/Þ, of the invariant measure is the Dirac delta

function concentrated at / ¼ p=4, i.e l ¼ dð/� p=4Þ, and the largest Lyapunov exponent is.
k ¼ � 1

2
½2b11 þ x1e11Rsðx1Þ� þ

1

8
k2
XN
‘;m¼1

c12‘c12mSnrnrðx1 � x2Þ ð36Þ
For the case gij ¼ g, i; j ¼ 1; 2, the point / ¼ p=4 is a singular point when the following conditions are

satisfied
k11 ¼ k22 ¼ 0; Sn‘nmðx1 � x2Þ ¼ 0; c12‘ ¼ c21‘; c12m ¼ c21m ð37Þ
where ‘;m ¼ 1; 2; . . . ; r, the upper sign (-) is taken when k12 ¼ k21 ¼ k, and the lower sign(+) when

k12 ¼ �k21 ¼ k. Similarly, it can be shown that the largest Lyapunov exponents are of the same form as

those for the case g11 6¼ g12 6¼ g21 6¼ g22 but with the term Sn‘nmðx1 � x2Þ replaced by Sn‘nmðx1 � x2Þ.
The results obtained in the previous sections are applied to investigate the stability of a deep rectangular

viscoelastic beam acted upon by stochastically varying concentrated load and end moments. Both cases of

non-follower and follower concentrated load are considered.
5. Flexural–torsional stability of a viscoelastic beam

5.1. Equation of motion

Consider a beam in the form of a rectangular strip supported at its ends, with principal flexural rigidities
EIx, EIy and torsional rigidity GJ . The beam is of length L, width w, thickness h such that w=h � 1, mass per



Fig. 1. Beam under central force and end moments.
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unit length m, translational and rotational viscous damping coefficients per unit length Du, Dw, respectively,

and with a polar radius of gyration of the cross-section r.
The beam is bent in its plane by a stochastically varying static central load P ¼ Ps þ P ðt1Þ and end mo-

ments M ¼ Ms þMðt1Þ. It is assumed that during deformation the ends can rotate freely with respect to a
plane parallel to the ðx; yÞ-plane, but are prevented from rotation with respect to the z-axis by some con-

straint (see Fig. 1); thus, it is assumed that the lateral deflection is accompanied by a beam twist. Let the

deflection of the beam in the x-direction be denoted by u and the angle of twist through which the cross-

section rotates by w. The deflection in the y-direction is being neglected, since it is assumed that EIx � EIy .
The angle of twist is considered positive when the rotation is in the direction from the x-axis to the y-axis axis.

5.2. Non-follower force case

For a thin elastic beam under central force and end moments, the flexural and torsional equations of

motion, neglecting warping rigidity, (see e.g. Timoshenko, 1936; Bolotin, 1964; Fu and Nemat-Nasser,

1972; Ariaratnam et al., 1992) are given as follows:
EIy
o4u
oz4

þ o2ðMxwÞ
oz2

þ m
o2u
ot21

þ Du
ou
ot1

¼ 0

� GJ
o2w
oz2

þMx
o2u
oz2

þ mr2
o2w
ot21

þ Dw
ow
ot1

¼ 0

ð38Þ
where
Mx ¼
1

2
PzþM 06 z6 L=2

1

2
P ðL� zÞ þM L=26 z6 L

8><
>: ð39Þ
with boundary conditions
uð0; t1Þ ¼ uðL; t1Þ ¼
o2u
oz2

����
z¼0

¼ o2u
oz2

����
z¼L

¼ 0

wð0; t1Þ ¼ wðL; t1Þ ¼ 0

ð40Þ
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According to the Boltzmann superposition principle, a constitutive relation for a linear viscoelastic material

under three dimensional loading can be obtained by replacing the bulk modulus j and the shear modulus G
by appropriate Voltera operators (Drozdov, 1996). If in addition the material demonstrates elastic bulk

response, the bulk modulus is time independent and the following constitutive relation for a linear visco-
elastic material can be used:
r ¼ 3j�; ŝ ¼ 2Gð1� RÞê
r̂ ¼ rþ ŝ; �̂ ¼ �þ ê

ð41Þ
where r, �, and ŝ, ê are the first invariants and the deviatoric parts of the stress tensor r̂ and the strain tensor

�̂, respectively, and R is the relaxation operator given by Eq. (2). From the first of Eq. (41) and by
employing the correspondence principle, the elastic moduli E and G can be replaced by the Voltera

operators Eð1� RÞ and Gð1� RÞ, respectively. Therefore, for a viscoelastic beam the following equations

of motion neglecting warping rigidity can be obtained:
EIyð1� RÞ o
4u
oz4

þ o2ðMxwÞ
oz2

þ m
o2u
ot21

þ Du
ou
ot1

¼ 0

� GJð1� RÞ o
2w
oz2

þMx
o2u
oz2

þ mr2
o2w
ot21

þ Dw
ow
ot1

¼ 0

ð42Þ
with boundary conditions
uð0; t1Þ ¼ uðL; t1Þ ¼ ðo2u=oz2Þjz¼0 ¼ ðo2u=oz2Þjz¼L ¼ 0

wð0; t1Þ ¼ wðL; t1Þ ¼ 0
ð43Þ
Eq. (42) are difficult to solve in this form and therefore an approximate solution can be sought by using
some discretizing technique such as the Galerkin method. If only the fundamental modes are considered,

the above boundary conditions are satisfied by taking
uðz; t1Þ ¼ c�rq1ðt1Þ sinðpz=LÞ
wðz; t1Þ ¼ q2ðt1Þ sinðpz=LÞ

ð44Þ
where c� is a parameter to be chosen to facilitate a suitable coordinate scaling. Substituting for u and w
from Eq. (44) into the equations of motion (42), employing the Galerkin method and introducing the non-

dimensional time scale t ¼ mt1, where the frequency m is given by m ¼ p2

L2

ffiffiffiffiffi
EIy
m

q
, the following non-dimensional

system of equations can be obtained.
€q1 þ
L2Du

p2
ffiffiffiffiffiffiffiffiffiffi
EIym

p _q1 þ ð1� RÞq1 �
c01
c�

q2 �
1

c�
ðn1 þ n2Þq2 ¼ 0

€q2 þ
L2Dw

p2r2
ffiffiffiffiffiffiffiffiffiffi
EIym

p _q2 þ
GJL2

p2r2EIy
ð1� RÞq2 � c�c01q1 � c�ðn1 þ n2Þq1 ¼ 0

ð45Þ
where n1 ¼ ð4þp2ÞL3PðtÞ
8p4rEIy

and n2 ¼ L2MðtÞ
p2rEIy

. Upon using the transformation
q1
q2

� �
! 1 c01=ðc�ðx2

1 � x2
2ÞÞ

c�ð1� x2
1Þ=c01 ð1� x2

2Þ=ðx2
1 � x2

2Þ

� �
q1
q2

� �
ð46Þ
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where
x2
1;2 ¼

1

2
1

�
þ L2GJ=ðp2r2EIyÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� L2GJ=ðp2r2EIyÞÞ2 þ 4c201

q �
c01 ¼ L2ðð4þ p2ÞPsLþ 8p2MsÞ=ð8rp4EIyÞ

ð47Þ
and pre-multiplying by the inverse of the transformation matrix of Eq. (46), non-dimensional equations

of motion of the same form as Eq. (1) can be obtained. For this case, k12 ¼ k21 ¼ k and the terms k11, k22, k
and c� are obtained as follows:
k11 ¼ 2c01=ðx1ðx2
1 � x2

2ÞÞ; k22 ¼ �2c01=ðx2ðx2
1 � x2

2ÞÞ

jk12k21j ¼ k2 ¼ jðx2
1 � x2

2Þ
2 � 4c201j

x1x2ðx2
1 � x2

2Þ
2

c� ¼ c01
ðx2

1 � x2
2Þ

x2ðc201 � ð1� x2
2Þ

2Þ
x1ðc201 � ð1� x2

1Þ
2Þ

�����
�����
1=2

ð48Þ
The multiplicative processes gij are such that gijðtÞ ¼ gðtÞ ¼ n1ðtÞ þ n2ðtÞ, i; j ¼ 1; 2. The corresponding
damping and viscoelastic terms bii and eii, i ¼ 1; 2, of Eq. (1) are obtained as follows:
b11 ¼ ðL2=ð2p2
ffiffiffiffiffiffiffiffiffiffi
EIym

p
ðx2

1 � x2
2ÞÞÞððx2

1 � 1ÞDw=r2 � ðx2
2 � 1ÞDuÞ

b22 ¼ ðL2=ð2p2
ffiffiffiffiffiffiffiffiffiffi
EIym

p
ðx2

1 � x2
2ÞÞÞððx2

1 � 1ÞDu � ðx2
2 � 1ÞDw=r2Þ

e11 ¼ ððx2
1 � 1Þðx2

1 þ x2
2 � 1Þ � x2

2 þ 1Þ=ðx2
1ðx2

1 � x2
2ÞÞ

e22 ¼ ðx2
1 � 1� ðx2

2 � 1Þðx2
1 þ x2

2 � 1ÞÞ=ðx2
2ðx2

1 � x2
2ÞÞ

ð49Þ
It is worth noting that the transformation matrix of Eq. (46), which is needed to diagonalize the original

coupled system, is constructed from the eigenvectors of the stiffness matrix of the elastic system of equa-

tions (45). The frequencies x1;2 are real provided L2GJ
p2r2EIy

> c201; therefore, the static loads at which static

buckling will occur are such that Ps
Pcr

þ Ms
Mcr

¼ 1, where
Pcr ¼
8p3

ð4þ p2ÞL2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyGJ

p
; Mcr ¼

p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyGJ

p
ð50Þ
The constant coefficients which measure the contribution of the ergodic processes nmðtÞ, m ¼ 1; 2, to the

multiplicative processes gijðtÞ, ij ¼ 1; 2, are obtained as c111 ¼ c121 ¼ c211 ¼ c221 ¼ 1 and c112 ¼ c122 ¼ c212 ¼
c222 ¼ 1. The cross-damping and viscoelastic terms bij and eij, i 6¼ j, have no effect on the solution in the first

approximation. Defining the non-dimensional parameter
�bi ¼ 2 2b�
i



� Si � S3

�
g0; i ¼ 1; 2 ð51Þ
where b�
i ¼ 2

k2Sþgg
ð2bii þ xieiiRsðxiÞÞ and
g0 ¼

1

ð4�S2
0
Þ1=2

cos�1ðS0=2Þ b < 0

1

ðS2
0
�4Þ1=2

cosh�1ðS0=2Þ b > 0

1
2

b ¼ 0

8>><
>>: ð52Þ

S0 ¼ S1 þ S2 � 2S3; S1 ¼ k211Sggð2x1Þ=ðk2Sþ
ggÞ

S2 ¼ k222Sggð2x2Þ=ðk2Sþ
ggÞ; S3 ¼ S�

gg=S
þ
gg; b ¼ k2Sþ

ggðS0 � 2Þ=32
ð53Þ
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and substituting for �bi into the formula of Eq. (29), the stability boundaries corresponding to k ¼ 0 can be

obtained from the following transcendental equation:
�b1e
� �b1 ¼ �b2e

� �b2 ð54Þ
By choosing different values for the non-dimensional parameter b�
1 and the spectral density ratios S1, S2, S3

and solving the transcendental equation (54) for �b2, stability boundaries in terms of b�
1 and b�

2 can be

obtained.
5.3. Follower force case

For the follower force case, the flexural and torsional equations of motion for a viscoelastic beam under

central force and end moments are given as follows:
EIyð1� RÞ o
4u
oz4

þ o2ðMxwÞ
oz2

þ Pwmd z
�

� 1

2
L
�
þ m

o2u
ot21

þ Du
ou
ot1

¼ 0

� GJð1� RÞ o
2w
oz2

þMx
o2u
oz2

þ mr2
o2w
ot21

þ Dw
ow
ot1

¼ 0

ð55Þ
where wm ¼ wðL=2; t1Þ is the value of the angle of twist wðz; t1Þ at Z ¼ L=2 and dðz� L=2Þ is the Dirac delta

function centered at L=2. Substituting for u and w from Eq. (44) into the equations of motion (55),

employing the Galerkin method and introducing the non-dimensional time scale t ¼ mt1, the following non-
dimensional system of equations can be obtained.
€q1 þ
L2Du

p2
ffiffiffiffiffiffiffiffiffiffi
EIym

p _q1 þ ð1� RÞq1 þ
c02
c�

q2 þ
1

c�
12� p2

4þ p2
n1

�
� n2

�
q2 ¼ 0

€q2 þ
L2Dw

p2r2
ffiffiffiffiffiffiffiffiffiffi
EIym

p _q2 þ
GJL2

p2r2EIy
ð1� RÞq2 � c�c01q1 � c�ðn1 þ n2Þq1 ¼ 0

ð56Þ
Upon using the transformation
q1
q2

� �
! 1 �c02=ðc�ðx2

1 � x2
2ÞÞ

�c�ð1� x2
1Þ=c02 ð1� x2

2Þ=ðx2
1 � x2

2Þ

� �
q1
q2

� �
ð57Þ
where
x2
1;2 ¼

1

2
1

�
þ L2GJ=ðp2r2EIyÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� L2GJ=ðp2r2EIyÞÞ2 � 4c01c02

q �
c02 ¼ L2ðð12� p2ÞPsL� 8p2MsÞ=ð8rp4EIyÞ

ð58Þ
and pre-multiplying by the inverse of the transformation matrix of Eq. (57), non-dimensional equations of

motion of the same form as Eq. (1) can be obtained. Without loss of generality it is always possible in the

follower force case to scale k11 ¼ k22 ¼ 1 and k12 ¼ �k21 ¼ 1. To facilitate a suitable coordinate scaling, the

parameter c� is now chosen such that c� ¼ 1. The non-dimensional parameters b11, b22, e11, e22 and c01 and
the ergodic processes n1 and n2 are of the same form as those for the non-follower force case. The constants
coefficients cijm, i; j;m ¼ 1; 2, which measure the contribution of the ergodic processes n1 and n2 to the

multiplicative processes gij, i; j ¼ 1; 2, are now obtained as
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c111 ¼
ð12� p2Þð1� x2

1Þð1� x2
2Þ þ ð4þ p2Þc202

ð4þ p2Þx1c02ðx2
2 � x2

1Þ

c112 ¼
c202 � ð1� x2

1Þð1� x2
2Þ

x1c02ðx2
2 � x2

1Þ

c121 ¼
ð12� p2Þð1� x2

2Þ
2 þ ð4þ p2Þc202

ð4þ p2Þx1ðx2
2 � x2

1Þ
2

c122 ¼
c202 � ð1� x2

2Þ
2

x1ðx2
2 � x2

1Þ
2

c211 ¼
ð12� p2Þð1� x2

1Þ
2 þ ð4þ p2Þc202

ð4þ p2Þx2c202

c212 ¼
c202 � ð1� x2

1Þ
2

x2c202
; c221 ¼ �x1

x2

c111; c222 ¼ �x1

x2

c112

ð59Þ
In the same manner as for the non-follower force case, the transformation matrix of Eq. (57) is constructed

from the eigenvectors of the stiffness matrix of the elastic system of equations (56). The frequencies x1;2 are

real if

i(i) c02 < 0 and L2GJ
p2r2EIy

> �c01c02.

(ii) c02 > 0 and L2GJ
p2r2EIy

< 1� 2ðc01c02Þ
1=2

, or L2GJ
p2r2EIy

> 1þ 2ðc01c02Þ
1=2

.

Condition (i) implies that
12� p2

4þ p2

Ps
Pcr

�
� Ms

Mcr

�
< 0 ð60Þ
and
Ps
Pcr

�
þ Ms

Mcr

�
Ms

Mcr

�
þ 12� p2

4þ p2

Ps
Pcr

�
< 1 ð61Þ
whereas condition (ii) implies that
12� p2

4þ p2

Ps
Pcr

�
� Ms

Mcr

�
> 0 ð62Þ
and
Ps
Pcr

�
þ Ms

Mcr

�
12� p2

4þ p2

Ps
Pcr

�
� Ms

Mcr

�
<

1

4

pr
L

ffiffiffiffiffiffiffi
EIy
GJ

r 
� L
pr

ffiffiffiffiffiffiffi
GJ
EIy

s !2

ð63Þ
Pcr and Mcr are the static buckling loads in the non-follower force case. From condition (ii) and under the

action of the central force only, i.e. by setting Ms ¼ 0, the value of Ps at which dynamic buckling can occur

is obtained as
P �
s ¼ 4p2jL2GJ � p2r2EIy j

rL3ð12� p2Þ1=2ð4þ p2Þ1=2
ð64Þ
This value agrees with that obtained earlier by Ariaratnam et al. (1992). By defining the non-dimensional

parameters
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�bi ¼
1

4
ð�b�

i þ 8Si � 8S3Þg0; i ¼ 1; 2 ð65Þ
where
b�
i ¼

32

ðSþ
g12g12

þ Sþ
g21g21

Þ ð2bii þ xieiiRsðxiÞÞ
and
g0 ¼

1

2ð4S2
4
�S2

0
Þ1=2

cos�1 S2
0
�2S2

4

2S2
4

� �
D > 0

1

2ðS2
0
�4S2

4
Þ1=2

cosh�1 S2
0
�2S2

4

2S2
4

� �
D < 0

1
S0

D ¼ 0

8>>><
>>>:

ð66Þ
S0 ¼ S1 þ S2 þ 2S3; S1 ¼ Sg11g11ð2x1Þ=ðSþ
g12g12

þ Sþ
g21g21

Þ
S2 ¼ Sg22g22ð2x2Þ=ðSþ

g12g12
þ Sþ

g21g21
Þ; S3 ¼ S�

g12g21
=ðSþ

g12g12
þ Sþ

g21g21
Þ

S4 ¼ ðSþ
g12g12

Sþ
g21g21

Þ1=2=ðSþ
g12g12

þ Sþ
g21g21

Þ; D ¼ 4ð4S2
4 � S2

0Þ=ð1þ S0Þ2
ð67Þ
and substituting for �bi into the formula of Eq. (27) and following the same procedure as that for the non-

follower force case, stability boundaries in terms of b�
1 and b�

2 can be obtained.
6. Numerical results and discussion

Modern aerospace and other structures are often constructed of materials that are more nearly visco-

elastic than elastic. Viscoelastic behaviour is observed in a number of materials which are extremely

important in applications using polymers and plastics, composite materials, concrete, soil, road con-

struction and building materials. For viscoelastic materials stress is not an instantaneous function of strain

but depends on the past time history of strain and vice versa. The constitutive relations that describe such

hereditary materials are usually integral relations possessing a relaxation kernel function rather than

algebraic equations of ordinary elasticity. Consequently, the governing equations of motion that describe

the dynamic response of viscoelastic systems are integro-differential equations.
A viscoelastic material having elastic bulk response and with a constitutive relation described as the three

parameter standard solid is considered for the present analysis. The viscoelastic model for standard solid

material is constructed by taking a Maxwell element in parallel with a spring or by taking a Kelvin element

in series with a spring. The constitutive relation for the deviatoric parts of the stress and strain tensors of

this material, ŝ and ê, respectively, can be shown to be given by the following differential equation:
ŝþ p1 _̂s ¼ q0êþ q1 _̂e ð68Þ
where p1, q0 and q1 are positive constants with a system physical necessity q1 > p1q0. By solving the dif-

ferential equation (68), the following relation can be obtained:
ŝ ¼ q1
p1

ê
�

� q1 � q0p1
q1p1

Z t

0

e
� 1

p1
ðt�sÞêðsÞds

�
ð69Þ
Eq. (69) is of the same form as that of Eq. (41) with 2G ¼ q1=p1 and a relaxation kernel given by
RðtÞ ¼ vi

Ti
e
� t

Ti where vi and Ti are the non-dimensional characteristic viscosity and relaxation time, respec-

tively, which are obtained as vi ¼ 1� q0p1=q1 and Ti ¼ p1.
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A more sophisticated viscoelastic model can be constructed by taking a Kelvin element in series with a

spring and a dashpot. The constitutive relation for the deviatoric parts of the stress and strain tensors, ŝ and
ê, of such a model is described by the following differential equation:
ŝþ p1 _̂sþ p2€̂s ¼ q1 _̂eþ q2€̂e ð70Þ
where p1, p2, q1 and q2 are positive constants with a system physical necessity p21 > 4p2, p1q1 > q2, and
p1q1q2 > p2q21 þ q22. By solving Eq. (70), the following relation can be obtained:
ŝ ¼ q2
p2

ê

 
�
X2
i¼1

vi
Ti

Z t

0

e
� 1

Ti
ðt�sÞêðsÞds

!
ð71Þ
Eq. (71) is of the same form as that of Eq. (41) with 2G ¼ q2=p2 and a relaxation kernel given by
RðtÞ ¼

P2

i¼1
vi
Ti
e
� t

Ti where
v1 ¼
p2½ðp1q2 � p2q1Þa1 � q2�

q2a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 � 4p2

p ; T1 ¼
1

a1

v2 ¼
p2½ðp2q1 � p1q2Þa2 þ q2�

q2a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 � 4p2

p ; T2 ¼
1

a2

a1;2 ¼
p1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 � 4p2

p
2p2

ð72Þ
For some viscoelastic models, the viscoelastic relaxation operator R is expressed in a more rigorous form

other than the simple integral form of Eq. (2). To show this, consider a four parameter viscoelastic model

constructed by taking two Kelvin element in series. The constitutive relation for the deviatoric parts of the

stress and strain tensors of such a model is obtained as
ŝþ p1 _̂s ¼ q0êþ q1 _̂eþ q2€̂e ð73Þ
where p1, q0, q1 and q2 are positive constants with a system physical necessity q1 > q0p1, q21 > 4q0q2,
q1p1 > q0p21 þ q2. The solution of Eq. (73) is obtained as the following:
ŝ ¼ 2G ê
�

� vi
Ti

Z t

0

e
� 1

Ti
ðt�sÞêðsÞds

�
þ q2

p1
_̂e ð74Þ
where 2G ¼ ðq1p1 � q2Þ=p21, vi ¼ 1� q0p21=ðq1p1 � q2Þ and Ti ¼ p1. The solution of Eq. (74) is of the same

form as that of Eq. (41) with the viscoelastic relaxation operator given by
R½wðtÞ� ¼
Z t

0

Rðt � sÞwðsÞds� ðq2p1=ðq1p1 � q2ÞÞ
dwðtÞ
dt

ð75Þ
More sophisticated viscoelastic models can be constructed by taking a combination of Maxwell and Kelvin

elements taken in parallel or in series. Consequently, more rigorous forms of the viscoelastic relaxation

operator, R, are required to analyze the viscoelastic system under consideration.

The motivation for the present study stems from the investigation of flexural–torsional instability of a

deep rectangular viscoelastic beam subjected to stochastically fluctuating central transverse load and end

moments applied simultaneously. For many cases, the central transverse force and end moments are

principally static loads. Even the loads are basically static, in some situations, it may be more realistic to
allow for random perturbations. The application of static loading subjected to random perturbation leads
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to dynamical systems with a coupled stiffness matrix. Previous works dealt with the investigation of elastic

beams that are subjected to either stochastic end moments or central transverse load applied separately and

neglected to consider for the static parts. Stochastic moment stability, in the mean and mean square, of an

elastic rectangular beam subjected to random end moments with zero mean was investigated by Ariaratnam
and Srikantaiah (1978) and sufficient stability conditions were obtained. Ariaratnam et al. (1992) studied

the stochastic stability of coupled linear systems and applied the obtained results to investigate the sto-

chastic stability of an elastic beam subjected to central random load with zero mean by calculating the

largest Lyapunov exponent. The almost-sure stochastic stability of a viscoelastic beam subjected to both

central transverse force and end moments applied simultaneously appears not to have been investigated

before. A broad class of non-gyroscopic viscoelastic systems is treated in the present analysis and a general

formulation is performed so that the case of a viscoelastic beam under combined loading can be considered

as an application.
Many researchers investigated the stability of viscoelastic dynamical systems, such as Touati and

Cederbaum (1994), Potapov and Bonder (1996) and Potapov (1997) by introducing the viscoelastic terms

as new variables and augmenting the dynamical systems under consideration. By augmenting the vis-

coelastic system, it will be very difficult if not impossible, using Khasminiskii�s techniques, to investigate

the almost-sure stochastic stability analytically for two and higher degrees of freedom systems. Also by

augmenting the viscoelastic dynamical systems, more computational effort and time are needed to

investigate the stability numerically. By employing the method of Larianov�s (1969) in the present

investigation, the viscoelastic terms are averaged as deterministic terms and the almost-sure stochastic
stability of the viscoelastic dynamical systems is investigated without the need to augment the system. In

the present study, the formulation is given in a more general form so that the combined loading of end

moments and follower transverse force case can be included. More general new results, for the extremely

different loading conditions of Case 1, are derived in Eq. (27). The results obtained in the earlier works

of Ariaratnam and Srikantaiah (1978) and Ariaratnam et al. (1992) can therefore, be deduced as special

results from the present study. When the method of stochastic averaging is used in the first approxi-

mation, only values of the excitation spectrum at the frequencies x ¼ 2x1; 2x2;x1 � x2 have effect on

the stability. If higher order approximations of the stochastic averaging method are used, stability
may be affected by values of the excitation spectrum at other multiples or fractions of the natural fre-

quencies.

The results obtained for the two-degrees of freedom system can be generalized to n-degrees of free-

dom system under certain conditions on the spectral density distribution of the parametric independent

ergodic processes n1ðtÞ and n2ðtÞ. For band-limited excitation, the spectral density is considered to be

small everywhere when compared with those near the neighborhood of some frequency x0; thus, SðxÞ is
concentrated in a narrow bandwidth, x0 � Dx0=2 < x < x0 þ Dx0=2, where Dx0 � x0. For such a process

with a spectral density SðxÞ ¼ Oð�Þ; 0 < j�j � 1, the correlation time sc is Oð1=Dx0Þ, while the relaxation
time sr is Oð1=�Þ. Hence if Dx0 � �, then sc � sr and the Markov process approximation made in the

previous sections will remain valid. By considering band-limited excitation processes, the largest Lyapunov

exponents for the n-degrees of freedom system when x0 lies in the neighborhood of 2x1; 2x2, and x1 � x2

can be deduced from those obtained for the two-degrees of freedom system.

For a rectangular beam, the parameters J and r are given as J ¼ wh3=3 and r ¼ h=
ffiffiffiffiffi
12

p
. By using the

relation G ¼ E=ð1þ mÞ, where m is the Poisson�s ratio, and taking m ¼ 1=3, the non-dimensional frequencies

x1 and x2 can be obtained in terms of the ratio L=h. The non-dimensional parameters c01 and c02, the terms

k11, k22 and k for the non-follower force case and the coefficients cij‘, i; j; ‘ ¼ 1; 2 for the follower force case,
can be expressed in terms of the ratios L=h, Ps=ðEwhÞ and Ms=ðEwh2Þ. For numerical illustrations, a

viscoelastic material, known as the three parameter standard solid, with vi ¼ 0:9, Ti ¼ 2 and the non-

dimensional parameters L=h ¼ 10, Ps=ðEwhÞ ¼ 0:01 and Ms=ðEwh2Þ ¼ 0:02 are considered in the present

analysis. The non-dimensional static loading parameters can be calculated as c01 ¼ 15:822 and
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c02 ¼ �7:2872. Since the stochastic averaging method is used in the first approximation, only spectral

densities at the frequencies x ¼ 2x1, 2x2, x1 � x2 have an effect on stability. It is also found that the one-

sided Fourier sine and cosine transforms of the viscoelastic relaxation function, RsðxÞ and RcðxÞ, evaluated
at the natural frequencies of the system play the role of effective viscous damping and additional elastic
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stiffness. The viscoelastic terms xieiiRsðxiÞ, i ¼ 1; 2, are observed to have a stabilizing effect on the system

considered as can be seen from Figs. 2 and 3. For the non-follower force case, it can be seen from Figs. 4–6,

that the spectral density ratios S1, S2 and S3 have a destabilizing effect. By considering this result and using

the definition of the corresponding spectral density ratios, it can be inferred that the spectral densities

Sggð2x1Þ, Sggð2x2Þ and Sggðx1 þ x2Þ have a destabilizing effect whereas Sggðx1 � x2Þ has a stabilizing effect.

Defining the non-dimensional parameters ai ¼ �8kig0=k
2, i ¼ 1; 2, the spectral density of the non-follower

white noise central force has a destabilizing effect as can be seen from Fig. 7. For the follower force case, it
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can be inferred from Figs. 8–11 that the densities Sg11g11ð2x1Þ, Sg22g22ð2x2Þ and Sg12g21ðx1 � x2Þ have a de-

stabilizing effect, whereas the densities Sg12g21ðx1 þ x2Þ, Sg12g12ðx1 � x2Þ, Sg12g12ðx1 þ x2Þ, Sg21g21ðx1 � x2Þ,
and Sg21g21ðx1 þ x2Þ have a stabilizing effect. Again stability boundaries in the space of the non-dimensional

parameters ai ¼ 8kig0, i ¼ 1; 2, are obtained for the follower force case. The spectral density of the follower

white noise central force has a destabilizing effect as can be seen from Fig. 12.

The ergodic stochastic processes n1ðtÞ and n2ðtÞ are obtained in terms of the central transverse force P ðtÞ
and end moments MðtÞ, respectively. The spectral densities of the multiplicative processes Sgijgrs ,
i; j; r; s ¼ 1; 2, using Eq. (5), can be given in terms of the spectral densities of the independent processes n1ðtÞ
and n2ðtÞ by the relation: SgijgrsðxÞ ¼ cij1crs1Sn1n1ðxÞ þ cij2crs2Sn2n2ðxÞ. Knowing the effect of the spectral



0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8

S1 = 0.3
S1 = 0.4

S1 = 0.2

β∗
1

β∗
2

//// stable

////

////

////

Fig. 8. Effect of the spectral density ratio S1 on stability boundaries of a viscoelastic beam under follower force with S2 ¼ 0:5,

S3 ¼ �0:25, S4 ¼ 0:2.

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8

S2 = 0.4
S2 = 0.3
S2 = 0.2

1

2
////

//// stable

////
////

β∗

β∗

Fig. 9. Effect of the spectral density ratio S2 on stability boundaries of a viscoelastic beam under follower force with S1 ¼ 0:5,

S3 ¼ �0:25, S4 ¼ 0:2.

2706 S.T. Ariaratnam, N.M. Abdelrahman / International Journal of Solids and Structures 41 (2004) 2685–2709
densities SgijgrsðxÞ on stability, the effect of the spectral densities Sn1n1ðxÞ and Sn2n2ðxÞ is determined by

evaluating the coefficients cij‘crs‘, i; j; r; s; ‘ ¼ 1; 2. For the non-follower force case it is found that cij‘ ¼ 1,

i; j; ‘ ¼ 1; 2 and thus, it can be inferred that the spectral densities of the ergodic processes n1ðtÞ and n2ðtÞ
have a destabilizing effect at the frequencies 2x1, 2x2 and x1 þ x2 and a stabilizing effect at the frequency

x1 � x2. For the follower force case, the coefficients cij‘, i; j; ‘ ¼ 1; 2, are given in terms of the parameters

x1, x2 and c02. This implies that, for the follower force case, the effect of the spectral densities of the ergodic
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processes n1ðtÞ and n2ðtÞ on stability is determined in part by the ratios L=h, Ps=ðEwhÞ and Ms=ðEwh2Þ. The
results obtained in the present analysis can be expressed in terms of the dimensional spectral densities of
the excitation processes ~gijðt1Þ, i; j ¼ 1; 2 where t ¼ mt1. The dimensional spectral densities are given by the

following relations:
S~gij~grsðmxÞ ¼
1

m
SgijgrsðxÞ; i; j; r; s ¼ 1; 2; x ¼ 2x1; 2x2;x1 � x2 ð76Þ
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7. Conclusions

The stability of a viscoelastic non-gyroscopic system described by a stochastic integro-differential

equation was investigated. The system was parametrically excited by a force given by a linear combination

of ergodic stochastic processes of small intensity and a short correlation time. Explicit expressions for the

largest Lyapunov exponent as an almost-sure stability indicator, valid in the first approximation, were

obtained by making use of the stochastic averaging method for the non-viscoelastic terms together with
Khasminskii�s technique. The integral term arising from the viscoelastic effect was averaged by employing

Larianov�s method. The obtained results were applied to investigate the stability of a narrow and deep

rectangular viscoelastic beam under random transverse central load and end moments applied simulta-

neously. Both cases of follower and non-follower central loads were considered. The effect of the excitation

spectrum at the frequencies, x ¼ 2x1; 2x2;x1 � x2, on stability was investigated and stability boundaries in

the space of non-dimensional parameters, given in terms of the system parameters were obtained.
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