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Abstract

In this paper the dynamic stability of non-gyroscopic viscoelastic systems under multiple parametric excitations is
investigated. The largest Lyapunov exponent as an indicator of the almost-sure asymptotic stability of the system is
obtained by applying the stochastic averaging method together with Khasminskii’s technique. The integral term arising
from the viscoelastic effect is averaged by making use of Larianov’s method. As an application, the flexural-torsional
instability of a deep rectangular viscoelastic beam under stochastically fluctuating central load and end moments ap-
plied simultaneously is investigated. Both cases of follower and non-follower central fluctuating load are included in this
analysis.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic stability of non-gyroscopic conservative elastic systems such as beams and columns under
non-follower force, and of non-gyroscopic, non-conservative systems such as plates in supersonic flow
under deterministic axial thrust have been treated in detail by Bolotin (1963, 1964). Applications to the
dynamic stability of structures under periodic forces may also be found in the articles by Mettler (1966,
1968). The dynamic stability problem of elastic beams under deterministic parametric and external loads
associated with different end conditions has been investigated by many researchers, such as Saito and
Koizumi (1982), Huang and Hung (1984).

In some engineering applications, there exist situations in which the exciting forces cannot be described
adequately in the form of deterministic functions alone and a modelling based on probabilistic terms is
needed. Some examples of such stochastic excitation are forces generated by jet and rocket engines in
modern high powered aircraft and missile structures, excitation due to earthquakes, ocean waves, and wind
gusts. Furthermore, even when the excitation can be described to be principally deterministic, it may be
more realistic to investigate the stability of the system by subjecting it to an additional random pertur-
bation. To investigate the stability of linear stochastic systems, Khasminskii (1967) developed a technique,
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based on the concept of Lyapunov exponent as an almost-sure stability indicator, by studying the
dynamical stability of linear systems described by Ito stochastic differential equations whose solutions are
Markov processes.

The stochastic stability of certain two-dimensional systems using Khasminskii’s technique (1967), has
been investigated by Mitchell and Kozin (1974). By using the method of stochastic averaging developed by
Stratonovich (1963) and Khasminskii (1966), the moment stability of non-gyroscopic elastic systems under
random loading was examined by Ariaratnam and Srikantaiah (1978). The sample stability of the same
class of problems under white noise excitation was also studied by Ariaratnam et al. (1990) and under real
noise excitation by Ariaratnam et al. (1992) by using a combination of the stochastic averaging method and
Khasminskii’s technique.

A two-dimensional viscoelastic system under a phase modulated bounded noise process was studied by
Ariaratnam (1995). Potapov and Bonder (1996) investigated the vibrations of elastic and viscoelastic plates
under random loading and obtained stability conditions in the mean and mean square sense. Ariaratnam
and Abdelrahman (2001) studied the stability of viscoelastic plates in supersonic gas flow and under sto-
chastic axial thrust and obtained explicit expressions for the largest Lyapunov exponent.

In the present paper, the stability of non-gyroscopic viscoelastic systems subjected to multiple parametric
random excitations described by a linear combination of ergodic stochastic processes of small intensity and
short correlation time is investigated. The motivation for the study of this class of problems stems from the
investigation of flexural-torsional instability of a deep rectangular viscoelastic beam subjected to sto-
chastically fluctuating central transverse load and end moments applied simultaneously. The almost-sure
stability conditions are obtained by using a combination of the method of stochastic averaging and
Khasminskii’s technique together with Larianov’s method (1969) for averaging the viscoelastic terms. In
analogy with the deterministic results obtained by Mettler (1968), it is found in this analysis that only those
values of the excitation spectrum near twice the system natural frequencies and the sum and difference of
the natural frequencies influence the stability in the first approximation. As an application, the flexural—
torsional instability of a deep rectangular viscoelastic beam under follower or non-follower central
transverse loads and end moments is investigated in the present analysis.

2. Formulation

Consider a dynamical system described by the following non-dimensional linear stochastic differential
equations:

ql+w12ql_wlzzeljR[ql]+2Zﬁquj+wlzkljnu(t)ql:07 12172,71/1 (1)
j=1 J=1 Jj=1

where ¢; are the non-dimensional generalized coordinates, w; are the non-dimensional natural frequencies,
e;; are non-dimensional constant coefficients and R is a viscoelastic relaxation operator given by

Ry = | R — () de @

The non-dimensional coefficients terms f;; and k;; are the small viscous damping and stiffness coefficients,
respectively. The non-dimensional processes 1,(¢), i,j = 1,2,...,n, denote the multiple parametric exci-
tations and are described as a linear combination of the non-dimensional ergodic stochastic processes &,,(¢),
where m = 1,2,...,N. The processes ¢, (¢) are considered to have zero mean and a sufficiently small cor-
relation time:
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N
nij(t) :Zcijmém(t) la]: 1,2,...,]1 (3)

m=1

where ¢;;, are non-dimensional constant coefficients giving the contribution of the ergodic stochastic
processes ¢, (1), m=1,2,...,N, to the multiplicative processes #;,(¢), i,j=1,2,...,n. The system of
equations (1) describes exactly the parametrically excited motion of non-gyroscopic, discrete, linear
mechanical systems with n-degrees of freedom about the equilibrium configuration g; = 0. They may also
describe approximately the motion of certain continuous linear systems whose governing partial differential
equations may be reduced to a finite number of ordinary differential equations by some appropriate dis-
cretization technique such as the Rayleigh-Ritz, Galerkin, finite difference, or finite element procedures.
The stability of the equilibrium state ¢ = ¢ = 0 for elastic systems, when the parametric excitation is a
deterministic harmonic function of time, i.€ 1,; = ¢ cos wt, was investigated by Mettler (1968), and it is well
known that instabilities occur when the excitation frequency o is in the neighborhood of the values w/p,
where p is a positive integer and «, depends on the form of the coupling coefficients k;;. Instabilities of the
first kind arise for wy = 2w; and correspond to parametric resonance of the subharmonic type in which only
the particular mode ¢; is excited into motion. Regions of instabilities of the second kind are found for

o — w; + ; (l #j) if k,:/'kj,- >0 (4)
‘ li —awy (i j) if kik; <0

In the present analysis, the damping terms f;;, the cosine and sine spectral densities of the multiplicative
processes 1;;(t), 1,,(t), respectively, S, , () and ¥, , (), i,j,r,s =1,2...,n, are considered to be of the
order of some small quantity ¢, 0 < ¢ < 1. The relaxation kernel R() is assumed to be integrable such that
JooR(t)dt < oo, [T tR(r)dt < oo, and the terms [° e;R(¢) sinw;tdr, i = 1,2,...,n are considered to be of
order &. The terms fOOOR(Z) sinw;tdt, i =1,2,...,n, are the sine transform functions of the relaxation
kernel. Therefore, the stochastic averaging method may be used to replace the system of equations (1) by
approximate It6 equations. The non-dimensional cosine and sine cross-spectral densities, S,I_mm(w) and
¥, (@), respectively, are given by

N
Sm/nrx(w) = Z Cii[crs'"S§[§n1(w)
{,m=1
N (5)
Py, (@) = Z CijeCrom Ve, (@)

{m=1

The non-dimensional functions S;,¢, (w) and P, (w) are the cosine and sine cross-spectral densities of the

ergodic stochastic processes &, (¢) and &,(¢), £,m =1,2,... N, and are defined as

See, (@) = 2/oo E[&,(1)&,(t + )] cos wrdt
= ©)
Ve, (0) = 2/0 E[E, ()&, (t+ 1)] sinwtdre

where E[.] denotes the expectation operator, o, and 7 represent the non-dimensional frequency and sepa-
ration time, respectively. Using the transformation
qi :aiCOS@i, qi = —a;a)isin @i, O, = w;t+0,~, 1= 1727...,}’[ (7)

and applying the method of variation of parameters, equations of motion in terms of the amplitudes a;(¢)
and the phases 6;(¢) of the response processes can be obtained as follows:
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2 sin O(

a;(t) = — o Zﬁ,]ajw]sm@ t) 4 sin O(¢ Z ;aM,;(t) cos ©(t)

— w;a; sin O;(¢) Z / e;R(t — 1) cos ©;(t)dr
== 0

. _ 2cos0(t N oa;
0,(t) = Z‘B"a]w] sin ©;(t) + cos O;(t) Zk,-ja—ini/(t) cos O;(1)

a;; Jj=1
— w;cos Ot Z/e,/ 7) cos @;(1)dr

As ¢ decreases to zero, the solution of the system of equations (8) converges in the weak sense and up to first
order in ¢ to a diffusive Markov process whose governing It6 equations are of the form

da; = ma‘dt + Z O'ijd%/.

j=1

d6; = modt + > p,dw,

=1

where W,, and W, are mutually independent unit Wiener processes. The drift coefficients m,, and my, and the
diffusion coeficients g;;, 1;; are obtained by using the averaging procedure of Stratonovich (1963) for the
non-viscoelastic terms and of Larianov (1969) for the viscoelastic terms and are given by

1 3 2 l 2 o+ af
,—Ewie,«iRS(w,) 6k”Sr,”,7” 2w;) + Zk,lk], e |9t T k,:,.SW;i

/#1 J#t

1 7 1 1
my, = — g Z k k 'II’L i gklzl 'II,L_I_,]‘,,,(Z(,O[) - E(D,’GHRC(CO,')

izl
J#

n

1 1
[06"], = <k2S,., Qw)a* +5 Y K:ST o

g i NiiMii 8 g MM
j=1
J#i
1 .
[oa"],; 8k’/k”S'7u'1, a; iF
(10)
1 a’
[up"]; = §k12z (28, (0) + Sy, (2007)] Z kzzj ;T,n,, %2
1#1
1 1 .,
[:“MT]U' = Zkﬁkjjsﬂii”jj (0) + gk[jkjiS’;:jy’/i ! 7& J
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The non-dimensional functions Sﬂi 0 Sy s Py, i # j are defined as
i i

S”l/"/! Z CijeCjim Sg/cm (wl + wj) + SC(/C ( w})]
=1

N

q,,n,, Z CijeCijm|Se,, (0 + 0)) £ Sg e, (07 — ;)] (11)
! N
L Z Cijeiim Were, (0r + ;) & Wee, (07 — ;)]

{m=1

The non-dimensional one sided Fourier sine and cosine transforms of the relaxation kernel are given by
o0
R(w;) = / R(7) sinw;tdz
0

Rc(a)i):/o R(t)cosw;tdr

Since it is difficult to study the n-degrees of freedom system of Eq. (1) in its general form, the analysis from
now on will be restricted to a two-degrees of freedom system. The results obtained for the two-degrees of
freedom system may be generalized to n-degrees of freedom systems under certain conditions on the
spectral density distribution of the ergodic stochastic processes &,,(¢). Without loss of generality, it is always
possible to choose a suitable coordinate scaling such that ki, = £k, = k > 0, and with the product |kj2ky |
invariant under the scaling. For the two-degrees of freedom system, the amplitude equations corresponding
to Eq. (9) become

(12)

da1 = maldt—i— UlldVVal + UIZdVVaz

(13)
da, = mazdt + 0y dVVal + o d%z

The averaged amplitude vector (a;,a;) is a two-dimensional diffusion process and it can easily be shown
that the coefficients of the right side of Eq. (13) are homogeneous in a,, a, of degree one. The procedure of
Khasminskii (1967) can therefore be employed to obtain the largest Lyapunov exponent of the amplitude
process. By using the logarithmic polar transformation

H2 g =tan " (ar/ar), Pe(0,7/2) (14)

and employmg 1to’s differential rule, the following 1t6 equations for the functions p and ¢ can be obtained
as follows:

log(al + a,

Op
dp Q dt + Z (O-al/ a + az, a >dVV](I)

(15)
dp = &(¢ dt—|—z< S g az/g—i)d%(z)
where the drift coefficients O(¢) and ®(¢) in Eq. (15) are given by
O(¢p) = 41 cos* ¢ + Jysin® ¢ & k2 Sy T Zos()
(16)

1 1,
&(p) = ) (/11 — A)sin2¢ + = bsm 4¢ + k (S,;:Z,m + Sn*;llm) cot2¢
+ fcos2¢cot2¢p
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while the square of the diffusion coefficient for the ¢(¢)-process is given by

Z40(¢) = a+ fcos2¢p — beos* 2¢ (17)
where the constants /; = —f,, — %w,-e,-,-RS(wi) + %kfl.S,ﬁ,m(%),-), and a, b and f are found to be

a= 31—2 (3 1S 201) + K3y, (2002) + (S + S F2S, K

b= % (k3 Siymy 201) + 53580, (202) = (S 48, +28, k] (18)

f= 11—61«2(5;12,“2 =S )

In the expressions for the constants a and b, the upper sign (+) is taken when &, = k»; = k and the lower
sign(-) is taken when ky; = —ky; = k.

For a non-singular diffusion, i.e. when the diffusion coefficient in the It6 equation of the ¢ process is not
equal to zero, the probability density, p(¢), of the invariant measure of the ¢-process is governed by the
following Fokker—Planck equation:

3 25 Z @) - 0ot | ~0 (19)
By solving Eq. (19), one obtains

C Go
T Zu(@)UB) Ze(@)U($)

where C and G are the constants of integration and U(¢) is given by

or-en] 2] £

Upon substituting for @(¢) and X4 (¢) from Egs. (16) and (17), the following expression for U(¢) can be
obtained

o (41 — 72) sin2¢d¢
010~ g0 { [ s s -

The objective of the present study is to investigate the stochastic stability of a non-gyroscopic viscoelastic
system. One of the most important parameters in studying stochastic stability of dynamic systems is the
largest Lyapunov exponent, which characterizes the rate of exponential growth of the system response with
the passage of time. If the maximum exponent is positive, the system is unstable with probability one and if
it is negative, the system is stable with probability one. The vanishing of the expression for the top
Lyapunov exponent yields the almost-sure stability boundaries in the system parameter space.

() [u@ao (20)

3. Calculation of Lyapunov exponent

Case 1: 1y, (t) # n15(2) # 1y (2) # 195(¢). The integral in Eq. (22) depends on the value of 4 = —4b/a —
(f /a)z. If there is no accumulation of probability mass at the boundaries, the ¢-process is ergodic
throughout the interval 0 < ¢ < mn/2, and the probability density, u(¢), of the invariant measure can be
obtained as:
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For 4 <0,
Csin2¢ (22—1 = 2bcos2¢>
u(¢) = exp nh-
@) Zsg(9) av—4 ay
For 4 > 0,
~ Csin2¢ < A — M 1f—2bcos2q§>
exp | — tan
e av/4 av/4
For 4 =0,
C'sin 2¢ ( j.z — j.] )
= exp 23
%00(9) "2\ F = 2bcos 2 @)
where the constant C is determined as follows from the normalizing condition:
For 4 <0,
C— (A2 — 1)
{exp (% tanh ™' yz) exp ()ZJA tanh™' 5 )}
For 4 >0,
Co (42— 1)
B ) - d—1y —1
{exp(— ;\/Zl tan yz) — exp ( — %75 tan yl)}
For 4 =0,
C= }(’“2 —4) - (24)
o (G) — e (535
where the constants vy, 7, are defined by
—2b
Y1 :f ]
L L+ (25)
, =
|4

Employing Khasminskii’s (1967) technique, the largest Lyapunov exponent is given, with probability one,
by

/2
) = / 0(¢)u(¢) dg (26)

After performing the indicated integration, the following expressions for the largest Lyapunov exponent
can be obtained:

For 4 <0,
1 {exp (—*2**‘ tanh™! yz) + exp (—*2”‘ tanh ™! yl)] 1 ,
/125(/12—/11) +2(/L1+/L2)j: kS’;lzim

{exp (‘f/ﬂ tanh™ yz) exp (A:/A tanh™ yl)]
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For 4 > 0,
[ Ja—iy -1 Ja=li -1
1 exp(——a tan yz) +exp(— p tan ylﬂ 1 1
A= (=)t v /4 50+ 22) £ RS,
2 exp ( —2A tan'y,) —exp ( — 24 tan'y,
I a2 2 ava
For 4 =0,
[ A=A Jo—4
1 exp ( ) +exp | 7= } 1 1
A= 3 (A — A1) ()Hjb) ((j z)b)> + 3 (A +4)+ gsz,;mﬂ
_exp ( (}%HZ)) — exp ( (}%72;)') )}

(27)

Case 2: n;;(t) = n(t), i,j = 1,2. For this case, the constant f = 0, while the constants a and b are given

in terms of the spectral densities of the ergodic stochastic processes &, (f) and &,(¢) as the following:

1 N
a=z > crennlky St 201) + 3,8z, (20) + 4K%Se e, (01 F )]

{m=1

1 N
b=+ > crncrinlki Sz, (201) + 13,6, (202) — 42Se e, (01 + 03)]

{,m=1

(28)

Utilizing the same procedure as for Case (1), the probability density, u(¢), of the invariant measure and

the largest Lyapunov exponent A are found to be:

For 5 > 0,
Csin2¢ = A _ya+bcos?2¢
= h ——
) 2y x Ay cos a—bcos?2¢p
[
where the constant 4, = 16ab and the normalization constant C is obtained as:
C— (4 —A)
ch [ 28 cosh-! kb
2 sinh < \1/11_02 cosh ab)
1 = 2o La+b 1 . 1, & -
L= 5(/11 — lz) coth ( \/A_O cosh ! a_ b> + z(i] + /Lz) ﬂ:gkz(;I C]]gcl]mSiég»m
For b < 0,
Csin2¢ =72y a+bcos’2p
= exp| — cos 5
2ye(P) V=4 a—bcos?2¢
C = ()L,l — ;»2)
i A4 ~1 atb
2 sinh (\}720 cos ab)
o1 =74 _ya+b) 1 1, _
A= 5(}.1 — 12) coth ( \1/_:262 Cos ! P b) + 5(&1 + 12) :l:gkz [;1 C]lgcllmsaém
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For b =0,

Csin2¢ ( M=l >
= exp cos2¢
Zpp () 2a

_ (h—A)
s1nh(’1 a’z)

7 4(A — 4a) 1
A== (41 — J2) coth ML)
2( 1 2) <k2 Z;vm lcllecllnzsggm 2( ! 2)

+2 k E c11eCtimS, &

£m=1

(29)

[um—

The expressions of Eq. (29) are in the same form as those obtained earlier by Ariaratnam and Abdelrahman
(2001), but here are obtained as a special case when the multiple random excitation #;,(¢), i, j = 1,2, has a
specific form.

4. Singular case

The point ¢ = ¢, is considered to be a singular point when the square of the diffusion coefficient X4, (¢)
of the phase process ¢ vanishes at that point. For the case n,,(¢) # 1,,(¢) # 1, (f) # 1 (f), the point
¢ = m/4 is a singular point when the following conditions are satisfied

ki =kn =0, Sge(0rEwm) =0, co=—cur, Ciom=—Cm (30)

where /,m=1,2,...,N, the upper sign (+) is taken when k» = k;; = k, and the lower sign(-) when
ki = —ky; = k. Under the conditions of Eq. (30), the drift coefficients Q(¢), @(¢) and the diffusion co-
efficient X, (¢) are given by

0(¢) = - (/311 +%w1€11Rs(OJ1)> cos® ¢ — (/322 + %wzezsz(w2)> sin’ ¢

1
gk 4;1 CaeCianSec, (01 F 02) + Zgy(P)

2(B11 — ) + wrenRs(w1) — mrenR(w;)]sin2¢ (31)

4>.|~

o(¢) =

N
Z C12¢C1omS. Elm 601 F 602) cot 2¢ CoS 2¢

£m=1
N

1
Zyp(P) = —k Z C12C12mSe, ¢, (01 F @2) cos® 2¢

lm=

l
8

The nature of the singular point ¢ = ¢, is determined by the sign of the drift coefficient @(¢) at that point
(Mitchell and Kozin, 1974). Applying this criterion to the singular point ¢, = n/4, the following three cases
are considered.

(1) If 26, + wienRy(w1) > 2B, + mrenRi(w,), the singular point ¢, = n/4 is a right or forward shunt.
This implies that even if an initial point ¢, is in the left-half interval (0, 7/4), it will eventually be shunted
across to the right-half interval (n/4,7/2) and remain there forever. The probability density u(¢) of the
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invariant measure is confined to the right-half of the interval 0 < ¢ < n/2 and is governed by the Fokker—
Planck equation whose solution is now of the form:

#(¢>)={0 0<p<m/4

_c -
Z4s ($)U@) n/4< ¢ <m/2 )

where C is the normalizing constant. The largest Lyapunov exponent is obtained as

. 1 1, <
h=—5 28,5, + maenR ()] + gkz Z C126C12mSz,¢,, (01 F ) (33)
{,m=1

(ii) If 28,, + wienRs(w1) < 25, + wrenR(w,), the singular point ¢, = n/4 is a left or backward shunt.
This implies that even if an initial point ¢, is in the right-half interval (n/4,n/2), it will eventually be
shunted across to the left-half interval (0, 7/4) and remain there forever. The probability density p(¢) of the
invariant measure is concentrated in the left-half of the interval 0 < ¢ < /2 and is governed by the
Fokker—Planck equation whose solution is now of the form:

c
() = { T <9< m/4 (34)
0 /4 < P <m/2
The largest Lyapunov exponent is now given by
. 1 1, &
L= —E [2ﬁ11 + wlellRS(a)l)] +§k Z ClzgclzmSQém (w1 + (1)2) (35)

£m=1

(i) If 26, + wienRy(w1) = 2f,, + menR(w,), the singular point ¢, = n/4 is a trap. This implies that
regardless of where the initial point ¢, is situated, it will eventually be attracted to the point ¢, = /4 and
remain there forever. In this case, the probability density, u(¢), of the invariant measure is the Dirac delta
function concentrated at ¢ = n/4, i.e u = 6(¢ — n/4), and the largest Lyapunov exponent is.

. 1 1, &
i==3 28, + wien Ry(wy)] Jrgkz Z C120C12m S, ¢, (01 F 2) (36)

{,m=1

For the case n,; =1, i,j = 1,2, the point ¢ = /4 is a singular point when the following conditions are
satisfied

kip =kn =0, S (0 F @) =0, ci=cur, Ciom = Coim (37)
where ¢/, m=1,2,... r, the upper sign (-) is taken when ki, = ky; =k, and the lower sign(+) when
ki» = —ky; = k. Similarly, it can be shown that the largest Lyapunov exponents are of the same form as

those for the case 1,; # 1, # 1, 7 #,, but with the term Sy, (w; F w,) replaced by S;¢, (w1 £ w2).

The results obtained in the previous sections are applied to investigate the stability of a deep rectangular
viscoelastic beam acted upon by stochastically varying concentrated load and end moments. Both cases of
non-follower and follower concentrated load are considered.

5. Flexural-torsional stability of a viscoelastic beam

5.1. Equation of motion

Consider a beam in the form of a rectangular strip supported at its ends, with principal flexural rigidities
EI,, EI, and torsional rigidity GJ. The beam is of length L, width w, thickness A such that w/h < 1, mass per



S.T. Ariaratnam, N.M. Abdelrahman | International Journal of Solids and Structures 41 (2004) 2685-2709 2695

P(t) P(t)
J P PO

M“& 7 o :
- - M } Z X
' r

u (z,t)ﬁ

Fig. 1. Beam under central force and end moments.

unit length m, translational and rotational viscous damping coefficients per unit length D, Dy, respectively,
and with a polar radius of gyration of the cross-section r.

The beam is bent in its plane by a stochastically varying static central load P = P, + P(¢;) and end mo-
ments M = M; + M(t,). It is assumed that during deformation the ends can rotate freely with respect to a
plane parallel to the (x,y)-plane, but are prevented from rotation with respect to the z-axis by some con-
straint (see Fig. 1); thus, it is assumed that the lateral deflection is accompanied by a beam twist. Let the
deflection of the beam in the x-direction be denoted by u and the angle of twist through which the cross-
section rotates by . The deflection in the y-direction is being neglected, since it is assumed that El, >> EI,.
The angle of twist is considered positive when the rotation is in the direction from the x-axis to the y-axis axis.

5.2. Non-follower force case

For a thin elastic beam under central force and end moments, the flexural and torsional equations of
motion, neglecting warping rigidity, (see e.g. Timoshenko, 1936; Bolotin, 1964; Fu and Nemat-Nasser,
1972; Ariaratnam et al., 1992) are given as follows:
Mu (M) Qu Ou
El,— 4 — = 4+ D,— =0
R R R

*y o%u oty o
= GJ — + My — + mi? =0
Z Tt

where
1
P+ M 0<z<L/2
M,=141 (39)
EP(L_Z)+M L/2<z<L

with boundary conditions

o%u
u(0,t1) = u(L,t,) = =

W(O,ﬁ) = lp(l”tl) =0

%u

T2

=L (40)

z=0
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According to the Boltzmann superposition principle, a constitutive relation for a linear viscoelastic material
under three dimensional loading can be obtained by replacing the bulk modulus x and the shear modulus G
by appropriate Voltera operators (Drozdov, 1996). If in addition the material demonstrates elastic bulk
response, the bulk modulus is time independent and the following constitutive relation for a linear visco-
elastic material can be used:

o =3ke, §=2G(1 —R)é

. . . (41)

og=0+S, €e€=¢c+e
where o, ¢, and §, e are the first invariants and the deviatoric parts of the stress tensor ¢ and the strain tensor
¢, respectively, and R is the relaxation operator given by Eq. (2). From the first of Eq. (41) and by
employing the correspondence principle, the elastic moduli £ and G can be replaced by the Voltera
operators E(1 — R) and G(1 — R), respectively. Therefore, for a viscoelastic beam the following equations
of motion neglecting warping rigidity can be obtained:

u  P(M) Qu Ou
EIL(1— R)@ +— o +m 6t2 + Dy — @tl =0

Y Q%u , %Y o 42)
- GJ(1 —R)g—kMX@—i—m £l +D¢at 0
with boundary conditions
u(0,8,) = u(L,t;) = (8°u/d2*)|,_, = (8°u/dz*)|._, =0 (43)

lp(oatl) = lp(Latl) =0

Eq. (42) are difficult to solve in this form and therefore an approximate solution can be sought by using
some discretizing technique such as the Galerkin method. If only the fundamental modes are considered,
the above boundary conditions are satisfied by taking

M(Z, tl) = CI1(f1) sin(nz/L) (44)
Y(z, 1) = g2(t1) sin(nz/L)

where ¢* is a parameter to be chosen to facilitate a suitable coordinate scaling. Substituting for u and
from Eq. (44) into the equations of motion (42), employing the Galerkin method and introducing the non-
dimensional time scale ¢ = v¢;, where the frequency v is given by v = Z—i \ /%, the following non-dimensional
system of equations can be obtained.

L’D,

72\ /EL,m
L*D, GJL?
92 + 7[27’2 /E[ym q2 + 7.52’/,2E'[y ( )qz ¢ Vo191 4 (él + éZ)ql

. ) 1
‘I1+ g+ (1 - R)‘]l*%‘h*;(fﬁrfz)qzzo

(45)

(4+72) L3 P(
where &, = % and & =

V)= eaom Ao b6 o

- rE[ ), Upon using the transformation
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1
i, = 3 (1 + L*GJ/(m°F°EL) ¥ \/ (1 — L2GJ /(=*r2EL))” + 4)}%1) )

vo1 = L*((4 + n*)P.L + 87°M,) /(8rn*EL)
and pre-multiplying by the inverse of the transformation matrix of Eq. (46), non-dimensional equations

of motion of the same form as Eq. (1) can be obtained. For this case, k1o = k»; = k and the terms ky, kx, k
and ¢* are obtained as follows:

ke = 2“/01/(001(@% - a)g)), kyy = _27’01/(@2(@% - w%))

2
(@] = @3)” — 475

lkiokyi| = K =
601(,02(60% — w%)z (48)
1/2
. _ Yo1 (g — (1= w%)z)
(@7 = 3) |1 (3, — (1 — 0})’)

The multiplicative processes #;; are such that n,;(¢) = n(t) = & (¢) + &(¢), i,j = 1,2. The corresponding
damping and viscoelastic terms f5; and e;, i = 1,2, of Eq. (1) are obtained as follows:

i = (L?/(2m* \/ELm(w *wz)))(( —1)Dy/r* — (3 — 1)D,)

ﬁzz = (L*/ (2 /ELm(e} — o)) (0 = 1)Dy — (3 = 1)Dy /1?)
((w? D(@] + o) — 1) — o) )/(wz( [ - o))

( (

ey = CU —-1- (w2 - 1)((91 + w2 - 1))/ w%(w% - wz))

(49)

It is worth noting that the transformation matrix of Eq. (46), which is needed to diagonalize the original
coupled system, is constructed from the eigenvectors of the stiffness matrix of the elastic system of equa-
tions (45). The frequencies m;, are real provided Los -, 75,; therefore, the static loads at which static

2 ZE]
buckling will occur are such that £ v M, — 1, where
Poe T ETGT. My~ JELGJ (50)
Cr_(4—|—7l?2)L2 ¥ ) cr—L ¥

The constant coefficients which measure the contribution of the ergodic processes &, (¢), m = 1,2, to the
multiplicative processes W;j(f)» ij=1,2, are obtained as ¢y; = ¢y = a1 =cpy = land cjp =cip = =
¢ = 1. The cross-damping and viscoelastic terms f3;; and e;;, i # j, have no effect on the solution in the first
approximation. Defining the non-dimensional parameter

Bi=2028; =S — Ss)my, i=1,2 (51)
where ff; = ﬁ(Zﬁﬁ + wie;Ry(w;)) and

m COS ™ (S0/2) b<O0

)1/2 cosh™'(Sy/2) b>0 (52)

Mo = 2
! b=0

So=81+85 —-28, S = kf,sw(zwl) /(ST

nm

$2 = KaSu(202) [(S)), Ss=5,/Sy, b= RS} (5 —2)/32

nm
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and substituting for f§; into the formula of Eq. (29), the stability boundaries corresponding to 2 = 0 can be
obtained from the following transcendental equation:

gle*/il _ ﬁ_ze*/;z (54)
By choosing different values for the non-dimensional parameter ] and the spectral density ratios Sy, S», S3

and solving the transcendental equation (54) for f3,, stability boundaries in terms of f; and f; can be
obtained.

5.3. Follower force case

For the follower force case, the flexural and torsional equations of motion for a viscoelastic beam under
central force and end moments are given as follows:

u (M, 1 o 0
EIy(l—R)a—ZZ—F (6'2‘/’)+P¢m5(z—§L)+matZ+D 6_Z:o
55
- GJ(1-R )j+M—+ 2'/’+D W _y 7
022 022 o Vo

where Y, = Y/(L/2, 1) is the value of the angle of twist Y(z,#) at Z = L/2 and 6(z — L/2) is the Dirac delta
function centered at L/2. Substituting for u and y from Eq. (44) into the equations of motion (55),
employing the Galerkin method and introducing the non-dimensional time scale ¢z = vt;, the following non-
dimensional system of equations can be obtained.

.. L’D, . Y02 1 /12—
41+W41+(1—R)Q1+—Qz+ g 25 &) =0 o
. L? D, y GJL? . ;
9>+ ngrz\/m 2+ nerEIy (1 - R)q2 —CYnq1 —C (51 + fz)ql =0
Upon using the transformation
q1 1 _VOZ/(C*(CO% - (U%)) :| { q1 } 57
{qz} - [—c*(l —o) /1 (1= d)/(@} - o3) | & (57)
where
: L e e \/1 L2GJ [ (722EL))? — 49,)
D2 =5 + [(m°r°EL) F /(1 - [(mr2EL))" — 4761702 (58)

700 = L*((12 — n*)P.L — 87°M,)/ (8rn*EL)

and pre-multiplying by the inverse of the transformation matrix of Eq. (57), non-dimensional equations of
motion of the same form as Eq. (1) can be obtained. Without loss of generality it is always possible in the
follower force case to scale k;; = ky, = 1 and &k, = —ky; = 1. To facilitate a suitable coordinate scaling, the
parameter ¢* is now chosen such that ¢* = 1. The non-dimensional parameters f3,,, 55, €11, €2 and y,, and
the ergodic processes &; and &, are of the same form as those for the non-follower force case. The constants
coefficients c;j, i,j,m = 1,2, which measure the contribution of the ergodic processes ¢, and ¢, to the
multiplicative processes n,;, i,j = 1,2, are now obtained as
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(12— )1 — of)(1 — »)) + 4+ )35

Cin =
(4 + 1)1y (@3 — o)
B e RO L)
1702 (03 — 07)
(2= )1 -0 + (@4 Tk
(4 + 1) (03 — })’ 59
2
_ 15— (1 = @3)
Cin = T a2
w; (w3 — o)
(2= - o)’ + 4+ 7
211 (4+ nz)wzyéz
2 (1 —w?)? 10 )
Co12 = M, Cnl = ——10111, €222 = ——10112
@270 (2} ()

In the same manner as for the non-follower force case, the transformation matrix of Eq. (57) is constructed
from the eigenvectors of the stiffness matrix of the elastic system of equations (56). The frequencies w, , are
real if

. 2
() 700 <0 and % > —Yo1V02-

.. 2 1/2 2 1/2
(i) 74, > 0 and nL < 1= 2(Yo170a) / L or 00 > 1 4 2(70170,) 2

zrzEIy n2r2EI,

Condition (i) implies that

12 - ﬂ:z Pv Mv
(74_'_712 P_cr_Mcr) <0 (60)
and
P M M, 12—-n*P
— = : —= 1 61
(Pcr+Mcr><Mcr+4+n2 Pcr>< (D)
whereas condition (ii) implies that
12—-n* P, M,
- S 0 62
(4+n2 P., Mcr)> (62)
and

2
P, M, 12— P, M, l(nr |[EI, L |GJ
—+ —— <= —\/=—-——4/= (63)
P, M, 4472 P, M, 4\ L VGJ nr\ El

P.. and M., are the static buckling loads in the non-follower force case. From condition (ii) and under the

action of the central force only, i.e. by setting M, = 0, the value of P, at which dynamic buckling can occur
is obtained as

. A7|L*GJ — n*r’EL)|
(12— m)' P+ )

(64)

This value agrees with that obtained earlier by Ariaratnam et al. (1992). By defining the non-dimensional
parameters
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=1
Bi = Z(_ﬁj +8S; — 8S83)ny, i=1,2 (65)
where
. 32
ﬁi = W (Zﬁii + a)ieiiRX(wf))
n2M2 21121
and
| _1 [ S3-2s?
s s () 4> 0
_ 1 [ $3-287
Mo W cosh ( 55 “) 4<0 (69
SLO A=0
So=81+8+28, S = Sﬂn'lll (2601)/<er2'712 + Sﬂ+21421)
S2 = S’122’722 (2602)/(S'1+12’712 + S';:le)’ S3 = S’1_12'721/(S;r12’112 + Sntmm) (67)
S, — (S;;MHSJMZ])1/2/(S:,r]2m + S’;Lz]ﬂzl)7 A =4(457 - 85)/(1 —|—So)2

and substituting for f, into the formula of Eq. (27) and following the same procedure as that for the non-
follower force case, stability boundaries in terms of ] and f8; can be obtained.

6. Numerical results and discussion

Modern aerospace and other structures are often constructed of materials that are more nearly visco-
elastic than elastic. Viscoelastic behaviour is observed in a number of materials which are extremely
important in applications using polymers and plastics, composite materials, concrete, soil, road con-
struction and building materials. For viscoelastic materials stress is not an instantaneous function of strain
but depends on the past time history of strain and vice versa. The constitutive relations that describe such
hereditary materials are usually integral relations possessing a relaxation kernel function rather than
algebraic equations of ordinary elasticity. Consequently, the governing equations of motion that describe
the dynamic response of viscoelastic systems are integro-differential equations.

A viscoelastic material having elastic bulk response and with a constitutive relation described as the three
parameter standard solid is considered for the present analysis. The viscoelastic model for standard solid
material is constructed by taking a Maxwell element in parallel with a spring or by taking a Kelvin element
in series with a spring. The constitutive relation for the deviatoric parts of the stress and strain tensors of
this material, § and e, respectively, can be shown to be given by the following differential equation:

§ 4 pi§ = qoe + qié (68)

where p;, gy and ¢, are positive constants with a system physical necessity g; > p1qo. By solving the dif-
ferential equation (68), the following relation can be obtained:

o t
s=1 (é S U} / e e (1) dr> (69)
pi q1p1 0

Eq. (69) isf of the same form as that of Eq. (41) with 2G = ¢;/p; and a relaxation kernel given by
R(t) = %e 7 where y, and T; are the non-dimensional characteristic viscosity and relaxation time, respec-
tively, which are obtained as y; = 1 — gop1 /g1 and T; = py.
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A more sophisticated viscoelastic model can be constructed by taking a Kelvin element in series with a
spring and a dashpot. The constitutive relation for the deviatoric parts of the stress and strain tensors, § and
e, of such a model is described by the following differential equation:

§+p1§+p2§=q1é+q2é (70)

where pi, p», q1 and g, are positive constants with a system physical necessity p? > 4p», pig1 > ¢», and
P19192 > paqi + ¢3. By solving Eq. (70), the following relation can be obtained:

2 ‘
92 Li —(t—1) 4
s=—|e— = e " Ve(r)dr 71
p2< >4 ® ) (1)

Eq. (71) is of the same form as that of Eq. (41) with 2G = ¢»/p>» and a relaxation kernel given by
R(t)=35", %e’T where

. g2 — P — qo 1
1 — )

g20u\/pt — 4p> %

1

_ pl(paqr — p1g2)% + o]

, Ih=— 72
~2 0202/} — 4p2 o (72)
p1EpL—4p
Op=—"3r—-—
2p

For some viscoelastic models, the viscoelastic relaxation operator R is expressed in a more rigorous form
other than the simple integral form of Eq. (2). To show this, consider a four parameter viscoelastic model
constructed by taking two Kelvin element in series. The constitutive relation for the deviatoric parts of the
stress and strain tensors of such a model is obtained as

§+p1§:qoé+q1é+qzé (73)

where pi, qo, ¢1 and ¢, are positive constants with a system physical necessity q; > qop1, ¢ > 4qoq2,
q1p1 > qopt + ¢». The solution of Eq. (73) is obtained as the following:

“ o u [ = (t=7) 4 ) 92
s=2Gle—= e " Ve(r)dr | +—e 74
( Ti/o ) D1 (74)

where 2G = (q1p1 — q2)/p}, 1: =1 — qop? /(q1p1 — ¢2) and T; = p;. The solution of Eq. (74) is of the same
form as that of Eq. (41) with the viscoelastic relaxation operator given by

dy (1)
dt

t
Ry (1)] = /0 R(t = 1)y(r)dr — (g2p1/ (11 — 92)) (75)
More sophisticated viscoelastic models can be constructed by taking a combination of Maxwell and Kelvin
elements taken in parallel or in series. Consequently, more rigorous forms of the viscoelastic relaxation
operator, R, are required to analyze the viscoelastic system under consideration.

The motivation for the present study stems from the investigation of flexural-torsional instability of a
deep rectangular viscoelastic beam subjected to stochastically fluctuating central transverse load and end
moments applied simultaneously. For many cases, the central transverse force and end moments are
principally static loads. Even the loads are basically static, in some situations, it may be more realistic to
allow for random perturbations. The application of static loading subjected to random perturbation leads
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to dynamical systems with a coupled stiffness matrix. Previous works dealt with the investigation of elastic
beams that are subjected to either stochastic end moments or central transverse load applied separately and
neglected to consider for the static parts. Stochastic moment stability, in the mean and mean square, of an
elastic rectangular beam subjected to random end moments with zero mean was investigated by Ariaratnam
and Srikantaiah (1978) and sufficient stability conditions were obtained. Ariaratnam et al. (1992) studied
the stochastic stability of coupled linear systems and applied the obtained results to investigate the sto-
chastic stability of an elastic beam subjected to central random load with zero mean by calculating the
largest Lyapunov exponent. The almost-sure stochastic stability of a viscoelastic beam subjected to both
central transverse force and end moments applied simultaneously appears not to have been investigated
before. A broad class of non-gyroscopic viscoelastic systems is treated in the present analysis and a general
formulation is performed so that the case of a viscoelastic beam under combined loading can be considered
as an application.

Many researchers investigated the stability of viscoelastic dynamical systems, such as Touati and
Cederbaum (1994), Potapov and Bonder (1996) and Potapov (1997) by introducing the viscoelastic terms
as new variables and augmenting the dynamical systems under consideration. By augmenting the vis-
coelastic system, it will be very difficult if not impossible, using Khasminiskii’s techniques, to investigate
the almost-sure stochastic stability analytically for two and higher degrees of freedom systems. Also by
augmenting the viscoelastic dynamical systems, more computational effort and time are needed to
investigate the stability numerically. By employing the method of Larianov’s (1969) in the present
investigation, the viscoelastic terms are averaged as deterministic terms and the almost-sure stochastic
stability of the viscoelastic dynamical systems is investigated without the need to augment the system. In
the present study, the formulation is given in a more general form so that the combined loading of end
moments and follower transverse force case can be included. More general new results, for the extremely
different loading conditions of Case 1, are derived in Eq. (27). The results obtained in the earlier works
of Ariaratnam and Srikantaiah (1978) and Ariaratnam et al. (1992) can therefore, be deduced as special
results from the present study. When the method of stochastic averaging is used in the first approxi-
mation, only values of the excitation spectrum at the frequencies w = 2wy, 2w,, w; £ w, have effect on
the stability. If higher order approximations of the stochastic averaging method are used, stability
may be affected by values of the excitation spectrum at other multiples or fractions of the natural fre-
quencies.

The results obtained for the two-degrees of freedom system can be generalized to n-degrees of free-
dom system under certain conditions on the spectral density distribution of the parametric independent
ergodic processes ¢;(¢) and &, (¢). For band-limited excitation, the spectral density is considered to be
small everywhere when compared with those near the neighborhood of some frequency wy; thus, S(w) is
concentrated in a narrow bandwidth, wy — Awy/2 < @ < wy + Awy/2, where Awy < @y. For such a process
with a spectral density S(w) = O(e),0 < |¢| < 1, the correlation time 7. is O(1/Awy), while the relaxation
time 7, is O(1/e). Hence if Awy > €, then 1. < 1, and the Markov process approximation made in the
previous sections will remain valid. By considering band-limited excitation processes, the largest Lyapunov
exponents for the n-degrees of freedom system when wy lies in the neighborhood of 2w, 2w,, and w; + w,
can be deduced from those obtained for the two-degrees of freedom system.

For a rectangular beam, the parameters J and r are given as J = wh?/3 and r = h/+/12. By using the
relation G = E/(1 + v), where v is the Poisson’s ratio, and taking v = 1/3, the non-dimensional frequencies
o; and w, can be obtained in terms of the ratio L/A. The non-dimensional parameters 7y, and y,,, the terms
ki1, k2 and k for the non-follower force case and the coefficients c¢;y, i, j, ¢ = 1,2 for the follower force case,
can be expressed in terms of the ratios L/h, P,/(Ewh) and M,/(Ewh*). For numerical illustrations, a
viscoelastic material, known as the three parameter standard solid, with y; = 0.9, 7; =2 and the non-
dimensional parameters L/h = 10, P,/(Ewh) = 0.01 and M,/(Ewh*) = 0.02 are considered in the present
analysis. The non-dimensional static loading parameters can be calculated as 7y, = 15.822 and
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Yoo = —7.2872. Since the stochastic averaging method is used in the first approximation, only spectral
densities at the frequencies w = 2wy, 2m,, w; + w, have an effect on stability. It is also found that the one-
sided Fourier sine and cosine transforms of the viscoelastic relaxation function, R;(w) and R.(w), evaluated
at the natural frequencies of the system play the role of effective viscous damping and additional elastic

1B, 111l stable
. - - o8 Re(@)/(K’S",) = 0.2
y S e o811 Ry(0,)/(K*S",) = 0.4
— oe;5R(@)/(K*S",, ) = 0.6
0.75
0.5
0.25
N
B 11 /(kzs rm)
0 T T T T T .
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 2. Effect of the viscoelastic term e Ry(w;) on stability boundaries of a viscoelastic beam under non-follower force with
81 =0.75, 5, =0.5, S = 0.25.

18, . [l stable
- - 28R (0,)/(K*S",) = 0.25
(/A @,€55R<(@)/(K*S" ) = 0.50
0.751 — menR(0)/(K’S",) = 0.75
0.51
0.25 1
2+t
o 622 /(k S Tm)
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 3. Effect of the viscoelastic term m,eynR (w;) on stability boundaries of a viscoelastic beam under non-follower force with
Sl = 075, Sz = 05, Sg = 025
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Fig. 4. Effect of the spectral density ratio S; on stability boundaries of a viscoelastic beam under non-follower force with S, = 0.5,
83 =0.75.
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Fig. 5. Effect of the spectral density ratio S, on stability boundaries of a viscoelastic beam under non-follower force with S; = 0.25,
S; =0.75.

stiffness. The viscoelastic terms w;e;R,(w;), i = 1,2, are observed to have a stabilizing effect on the system
considered as can be seen from Figs. 2 and 3. For the non-follower force case, it can be seen from Figs. 4-6,
that the spectral density ratios S;, S, and S; have a destabilizing effect. By considering this result and using
the definition of the corresponding spectral density ratios, it can be inferred that the spectral densities
Si(aw1), Sy (2w,) and Sy, (w1 + w,) have a destabilizing effect whereas Sy, (o, — w,) has a stabilizing effect.
Defining the non-dimensional parameters o; = —8/;1,/k>, i = 1,2, the spectral density of the non-follower
white noise central force has a destabilizing effect as can be seen from Fig. 7. For the follower force case, it
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Fig. 6. Effect of the spectral density ratio S5 on stability boundaries of a viscoelastic beam under non-follower force with S; = 0.25,
S, =0.5.
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Fig. 7. Effect of the spectral density ratio S on stability boundaries of a viscoelastic beam under white noise non-follower force.

can be inferred from Figs. 8—11 that the densities S, ,,,(2w1), Sy, (202) and Sy, (0 — ;) have a de-
stabilizing effect, whereas the densities S, (01 + @2), Sy, (@1 — @2), Syn, (@1 + @2), Sy, (01 — @),
and S, ,,, (0 + @) have a stabilizing effect. Again stability boundaries in the space of the non-dimensional
parameters o; = 84;1,, i = 1,2, are obtained for the follower force case. The spectral density of the follower
white noise central force has a destabilizing effect as can be seen from Fig. 12.

The ergodic stochastic processes & (7) and &,(¢) are obtained in terms of the central transverse force P(z)
and end moments M(t), respectively. The spectral densities of the multiplicative processes S, ,
i,j,r,s = 1,2, using Eq. (5), can be given in terms of the spectral densities of the independent processes &, (¢)
and &,(¢) by the relation: S,l_mm(w) = Cij1C15¢,¢, (0) + ¢ippcaSe,e, (). Knowing the effect of the spectral
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Fig. 8. Effect of the spectral density ratio S; on stability boundaries of a viscoelastic beam under follower force with S, = 0.5,
S3 =—0.25, 84 =0.2.
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Fig. 9. Effect of the spectral density ratio S, on stability boundaries of a viscoelastic beam under follower force with S; = 0.5,
S = —0.25, S84 =0.2.

densities S, , (w) on stability, the effect of the spectral densities S () and S, (w) is determined by
evaluating the coefficients c;jic,, i, j,7,s,¢ = 1,2. For the non-follower force case it is found that ¢,y = 1,
i,j,£ = 1,2 and thus, it can be inferred that the spectral densities of the ergodic processes &,(¢) and &,(¢)
have a destabilizing effect at the frequencies 2w, 2w, and w; + w, and a stabilizing effect at the frequency
o; — ;. For the follower force case, the coefficients ¢y, i,/,¢ = 1,2, are given in terms of the parameters
w1, 0, and y,,. This implies that, for the follower force case, the effect of the spectral densities of the ergodic
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Fig. 10. Effect of the spectral density ratio S; on stability boundaries of a viscoelastic beam under follower force with §; =6, S, = 5,
S, =0.2.
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Fig. 11. Effect of the spectral density ratio S, on stability boundaries of a viscoelastic beam under follower force with S; = 0.25,
S =0.5, 8 =-0.25.

processes ¢, (¢) and & (¢) on stability is determined in part by the ratios L/h, P,/(Ewh) and M,/(Ewh?). The
results obtained in the present analysis can be expressed in terms of the dimensional spectral densities of
the excitation processes #;(t1), i, j = 1,2 where ¢ = vt;. The dimensional spectral densities are given by the
following relations:

1
S, (V) = ;SW” (), i, j,r,s=1,2, ©=2w,2w,w £ w; (76)
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Fig. 12. Effect of the spectral density ratio S on stability boundaries of a viscoelastic beam under white noise follower force.

7. Conclusions

The stability of a viscoelastic non-gyroscopic system described by a stochastic integro-differential
equation was investigated. The system was parametrically excited by a force given by a linear combination
of ergodic stochastic processes of small intensity and a short correlation time. Explicit expressions for the
largest Lyapunov exponent as an almost-sure stability indicator, valid in the first approximation, were
obtained by making use of the stochastic averaging method for the non-viscoelastic terms together with
Khasminskii’s technique. The integral term arising from the viscoelastic effect was averaged by employing
Larianov’s method. The obtained results were applied to investigate the stability of a narrow and deep
rectangular viscoelastic beam under random transverse central load and end moments applied simulta-
neously. Both cases of follower and non-follower central loads were considered. The effect of the excitation
spectrum at the frequencies, w = 2wy, 2m,, w; £ w,, on stability was investigated and stability boundaries in
the space of non-dimensional parameters, given in terms of the system parameters were obtained.
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